文章针对高超声速可变形减速器的飞行稳定性预测及回收着陆需求,研究表面结构变形对减速器气动特性的影响效应,重点分析了高度10~50 km、Ma=0.15~4.6关键速域内的静、动态气动特性变化。文章采用求解雷诺平均Navier-Stokes方程(Reynolds...文章针对高超声速可变形减速器的飞行稳定性预测及回收着陆需求,研究表面结构变形对减速器气动特性的影响效应,重点分析了高度10~50 km、Ma=0.15~4.6关键速域内的静、动态气动特性变化。文章采用求解雷诺平均Navier-Stokes方程(Reynolds average Navier-Stokes,RANS)的数值模拟方法,获得了有无表面结构变形减速器的流场和气动参数。定常计算结果表明:变形效应导致飞行器迎风面存在局部的小尺度流动分离,变形后外形的气动阻力增加。结合刚性动网格技术的俯仰强迫振动,计算结果表明:减速器的动态稳定性受到迎风面高压及背风面分离涡结构的共同作用,迎风面的高气动压力载荷占主导作用,使得减速器的动态稳定性增强;背风面的涡结构导致动态稳定性减弱;轴对称分布的表面结构变形整体上增强了减速器的动态稳定性。展开更多
文摘文章针对高超声速可变形减速器的飞行稳定性预测及回收着陆需求,研究表面结构变形对减速器气动特性的影响效应,重点分析了高度10~50 km、Ma=0.15~4.6关键速域内的静、动态气动特性变化。文章采用求解雷诺平均Navier-Stokes方程(Reynolds average Navier-Stokes,RANS)的数值模拟方法,获得了有无表面结构变形减速器的流场和气动参数。定常计算结果表明:变形效应导致飞行器迎风面存在局部的小尺度流动分离,变形后外形的气动阻力增加。结合刚性动网格技术的俯仰强迫振动,计算结果表明:减速器的动态稳定性受到迎风面高压及背风面分离涡结构的共同作用,迎风面的高气动压力载荷占主导作用,使得减速器的动态稳定性增强;背风面的涡结构导致动态稳定性减弱;轴对称分布的表面结构变形整体上增强了减速器的动态稳定性。