期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
基于NVAE和OB-Mix的小样本数据增强方法 被引量:1
1
作者 杨玮 钟名锋 +3 位作者 杨根 侯至丞 王卫军 袁海 《计算机工程与应用》 CSCD 北大核心 2024年第2期103-112,共10页
由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过... 由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过采样潜变量的方式生成与真实目标图像属于同一分布的全新目标图像。在得到生成目标图像后,提出了OB-Mix数据增强策略,将生成目标图像与背景图像进行随机位置融合以构建出新的图像数据,从而提高网络的定位能力及泛化能力。方法在仅使用474张标注图像以及400张无检测目标的背景图像情况下,使YOLOv5的检测精确率达到95.86%,相比于不使用该方法的结果提高了17.60个百分点。 展开更多
关键词 数据增强 小样本 数据生成 新派变分自编码器(Nvae) 表面缺陷检测 深度学习
在线阅读 下载PDF
基于VAE-LSTM模型的无人机飞行数据异常检测 被引量:3
2
作者 王从宝 张安思 +2 位作者 杨磊 张保 李松 《电子测量技术》 北大核心 2024年第3期187-196,共10页
无人机飞行数据是反映其自身飞行安全的重要状态参数,通过对飞行数据进行异常检测,是提高无人机整体飞行安全性的关键举措。尽管基于数据驱动方法不需专家先验知识和精确的物理模型,但缺乏参数选择且检测网络结构模型单一,使得检测模型... 无人机飞行数据是反映其自身飞行安全的重要状态参数,通过对飞行数据进行异常检测,是提高无人机整体飞行安全性的关键举措。尽管基于数据驱动方法不需专家先验知识和精确的物理模型,但缺乏参数选择且检测网络结构模型单一,使得检测模型由于参数过多导致过拟合以及无法有效捕捉数据异常模式的问题。文中结合变分自编码器和长短期记忆网络的优势,提出了一种基于VAE-LSTM的无人机飞行数据异常检测模型方法。首先,引入肯德尔相关性分析方法用于选择相关依赖的飞行数据参数集;其次,将具有相关性的参数集对所设计的VAE-LSTM深度混合模型进行训练,学习不同数据特征之间的关系映射;最后,以无监督异常检测方式在真实多维无人机飞行数据进行验证。实验结果表明,VAE-LSTM的精密度、检测率、准确率、F1分数及误检率的各项平均性能指标分别达到95.24%、98.71%、98.8%、96.82%、1.31%,相比于KNN、OC-SVM、VAE、LSTM模型,整体上展现出较好异常检测性能。 展开更多
关键词 无人机飞行数据 Kendall相关性 变分自编码器 长短期记忆网络 混合模型 异常检测
在线阅读 下载PDF
基于改进LSTM-VAE的配电网异常负荷检测方法研究 被引量:3
3
作者 荆志朋 柴林杰 胡诗尧 《电测与仪表》 北大核心 2024年第9期71-76,共6页
针对目前配电网负荷数据异常检测方法准确率低的问题,提出将改进的长短期记忆网络和变分自编码器相结合用的配电网负荷异常检测方法。通过残差结构对长短期记忆网络进行优化,提高特征学习能力,并将优化后的长短期记忆网络替换变分自编... 针对目前配电网负荷数据异常检测方法准确率低的问题,提出将改进的长短期记忆网络和变分自编码器相结合用的配电网负荷异常检测方法。通过残差结构对长短期记忆网络进行优化,提高特征学习能力,并将优化后的长短期记忆网络替换变分自编码器的BP神经网络层(编码和解码),可以更好地获得负荷数据的时间相关性。通过与常规检测方法的试验对比,验证了所提检测方法的优越性。结果表明,相比于常规负荷数据异常检测方法,所提方法具有更好的检测准确率,异常检测准确率为97.30%,比未引入残差结构提高了1.70%,比LSTM模型提高了7.00%,比PSO-PFCM模型提高了4.80%。可为配电网自动化的发展提供一定的参考。 展开更多
关键词 配电网 负荷数据 异常检测 长短期记忆网络 变分自编码器
在线阅读 下载PDF
利用多层次网眼特征和VAE-PNN模型识别城市道路格网模式
4
作者 张云菲 邱泽航 《测绘学报》 EI CSCD 北大核心 2024年第1期189-198,共10页
作为道路网中普遍存在的显式模式之一,格网模式蕴含了丰富的城市空间格局信息,识别道路格网模式是实现自动化、智能化地图综合的关键前提。针对现有格网模式识别方法较少考虑多层次网眼特征,存在训练样本多样性不足等问题,本文提出一种... 作为道路网中普遍存在的显式模式之一,格网模式蕴含了丰富的城市空间格局信息,识别道路格网模式是实现自动化、智能化地图综合的关键前提。针对现有格网模式识别方法较少考虑多层次网眼特征,存在训练样本多样性不足等问题,本文提出一种基于多层次网眼特征和VAE-PNN模型的城市道路格网模式识别方法。首先,对原始路网数据进行化简;然后,设计了内部正交函数、格网形态描述和邻域相关关系的多层次网眼特征,进而利用变分自编码器(VAE)增强训练样本多样性;最后,借助概率神经网络(PNN)模型实现道路格网模式分类识别。试验结果表明,综合考虑多层次网眼特征能够准确识别不同类型、不同形态的道路格网模式,通过VAE样本增强有效提升分类模型性能和格网模式识别精度。 展开更多
关键词 格网模式识别 多层次网眼特征 变分自编码器 概率神经网络
在线阅读 下载PDF
基于VAE-GAN和FLCNN的不均衡样本轴承故障诊断方法 被引量:11
5
作者 张永宏 张中洋 +3 位作者 赵晓平 王丽华 邵凡 吕凯扬 《振动与冲击》 EI CSCD 北大核心 2022年第9期199-209,共11页
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷... 针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。 展开更多
关键词 滚动轴承 变分自编码器(vae) 生成对抗网络(GAN) 焦点损失(FL) 故障诊断
在线阅读 下载PDF
深度图网络驱动的核电系统多级异常检测方法
6
作者 张乐 成玮 +5 位作者 张硕 陈雪峰 常丰田 洪郡滢 马颖菲 彭将 《振动.测试与诊断》 北大核心 2025年第1期88-94,202,共8页
针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结... 针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结构;其次,基于变分图自编码器重构系统图结构,以重构误差来表征系统运行状态,从系统层面防止非线性突发行为带来的安全性问题;然后,通过半监督图卷积节点分类模型识别系统内部各变量运行状态,实现测点级异常检测;最后,以PCTranACP100仿真机2种基准事故工况数据、国内某核电机组循环水系统监测数据来验证提出方法的有效性。结果表明,系统级异常检测准确率达到93%,86%和90%,证明所提出方法能够准确检测出系统异常情况,可降低电厂单一仪表异常触发的非计划停机概率。 展开更多
关键词 核电系统 无监督深度图学习 可解释性图结构 多级异常检测 变分图自编码器
在线阅读 下载PDF
基于CVAE的时变工况轴承运行异常检测 被引量:2
7
作者 温广瑞 周浩轩 +1 位作者 苏宇 陈雪峰 《振动.测试与诊断》 EI CSCD 北大核心 2023年第1期1-8,194,共9页
数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题... 数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。 展开更多
关键词 时变工况 异常检测 条件变分自动编码器 轴承
在线阅读 下载PDF
深度概率优化的VAE轴承状态评估 被引量:2
8
作者 尹爱军 陈小敏 +1 位作者 谭建 王昱 《振动与冲击》 EI CSCD 北大核心 2021年第20期186-192,共7页
基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及... 基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及受样本数目影响较大等问题。研究分布变换优化VAE近似后验分布,利用优化采样算法优化计算VAE边缘概率密度,建立一种基于深度概率优化的VAE轴承状态评估模型。通过标准化流(normalizing flows)实现VAE中的分布优化,构造复杂灵活的近似后验分布,自适应学习健康状态下轴承振动信号频谱概率分布;采用AIS(annealed importance sampling,AIS)算法,通过一系列中间分布,采样完成边缘概率密度的优化计算,建立评价指标。滚动轴承对比实验表明,所提方法对滚动轴承退化过程更为敏感,证明了该方法在轴承状态评估中的有效性。 展开更多
关键词 深度概率优化 变分自编码器 标准化流 退火重要性采样 轴承状态评估
在线阅读 下载PDF
基于潮流嵌入和最小割池化的电网静态安全分析图学习模型
9
作者 马遵 李永哲 +4 位作者 何鑫 管霖 向川 陈勇 何伊慧 《南方电网技术》 北大核心 2025年第1期63-73,92,共12页
运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全... 运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全分析图学习模型。首先,通过以复原节点电压为导向的潮流状态嵌入模块,将电网N-1方式的拓扑差异转化为节点特征差异,改善了模型的泛化能力。其次,运用社团划分思想,采用最小割池化技术动态缩小了电网节点规模和节点特征维数,使模型具备对拓扑变化的适应能力。通过在IEEE 39节点系统和IEEE 118节点系统的验证测试和可视化分析,表明所设计的图深度学习模型准确率高,具有秒级的评估速度以及对电网规模变化的良好适应能力。 展开更多
关键词 静态安全分析 图深度学习 掩模图自编码器 潮流嵌入 图池化 拓扑变化适应性
在线阅读 下载PDF
基于Transformer和VAE的汽车新闻文本生成研究 被引量:2
10
作者 卢益清 严实莲 杜朋 《北京信息科技大学学报(自然科学版)》 2023年第2期82-87,共6页
针对汽车新闻领域的文本生成任务,对语料库存在的问题提出系统性的解决方法,并提出一个Transformer融合变分自编码器(variational auto-encoder, VAE)的文本生成模型。该模型采用基于Transformer的预训练-微调的方法,在解码阶段加入VAE... 针对汽车新闻领域的文本生成任务,对语料库存在的问题提出系统性的解决方法,并提出一个Transformer融合变分自编码器(variational auto-encoder, VAE)的文本生成模型。该模型采用基于Transformer的预训练-微调的方法,在解码阶段加入VAE辅助文本生成。与加入注意力(attention)机制的长短时记忆(long short-term memory, LSTM)网络模型以及Transformer模型的对比实验结果验证了方法的有效性,文本生成实例表明,通过该方法生成的句子表达更加丰富,更贴近人类的自然语言。 展开更多
关键词 汽车新闻 文本生成 变分自编码器 Transformer模型
在线阅读 下载PDF
深度学习在医院财务管理中的应用与实践
11
作者 竺三子 孙训 马哲文 《电子设计工程》 2025年第1期17-20,26,共5页
为提高医院财务信息管理能力,构建了一种结合主成分分析(Principal Component Analysis,PCA)和变分自编码器(Variational Auto-Encoders,VAE)的异常检测模型。基于收集和预处理财务数据,通过PCA进行特征提取,利用VAE学习数据的潜在分布... 为提高医院财务信息管理能力,构建了一种结合主成分分析(Principal Component Analysis,PCA)和变分自编码器(Variational Auto-Encoders,VAE)的异常检测模型。基于收集和预处理财务数据,通过PCA进行特征提取,利用VAE学习数据的潜在分布,并通过k折交叉验证提高模型的预测性能。实验结果显示,在训练集与测试集比例为9∶1的情况下,PCA-VAE在异常检测任务中表现出了优秀的性能,其精度、召回率和F1得分分别为0.9467、0.9421和0.9444,显著优于传统机器学习算法和结合PCA方法的分类模型。 展开更多
关键词 财务管理 主成分分析 变分自编码器 异常检测
在线阅读 下载PDF
面向不间断供电(UPS)系统的电能质量分析技术
12
作者 邓卜侨 谢岫峰 +2 位作者 纪明阳 艾青 王康 《电子设计工程》 2025年第1期12-16,共5页
针对现行UPS电能质量检测过程存在的准确率低、实时性差且成本高的缺点,文中基于VMD-SAE-1DCNN模型提出了一种UPS电能质量检测与识别算法。对于电能信号非线性与非平稳的特点,使用变分模态算法对原信号进行分解,从而得到本征模态信号。... 针对现行UPS电能质量检测过程存在的准确率低、实时性差且成本高的缺点,文中基于VMD-SAE-1DCNN模型提出了一种UPS电能质量检测与识别算法。对于电能信号非线性与非平稳的特点,使用变分模态算法对原信号进行分解,从而得到本征模态信号。同时,采用稀疏自编码器对本征模态信号进行特征提取,通过建立多层一维卷积神经网络模型对特征进行训练,提升了运算效率。实验测试结果表明,所提算法的迭代次数与运行时间在对比算法中均为最优,分类准确率可达97%以上,充分证明了改进算法的有效性。 展开更多
关键词 UPS 变分模态算法 稀疏自编码器 卷积神经网络 电能质量分析
在线阅读 下载PDF
基于VAE-WGAN的多维时间序列异常检测方法 被引量:14
13
作者 段雪源 付钰 王坤 《通信学报》 EI CSCD 北大核心 2022年第3期1-13,共13页
针对传统半监督深度异常检测模型对非平衡多维数据分布学习能力不足及模型训练困难等问题,提出一种基于VAE-WGAN架构的多维时间序列异常检测方法,利用VAE作为WGAN的生成器,使用Wasserstein距离作为模型拟合分布与待测数据真实分布之间... 针对传统半监督深度异常检测模型对非平衡多维数据分布学习能力不足及模型训练困难等问题,提出一种基于VAE-WGAN架构的多维时间序列异常检测方法,利用VAE作为WGAN的生成器,使用Wasserstein距离作为模型拟合分布与待测数据真实分布之间的度量,学习复杂的高维数据分布。利用滑动窗口划分时间序列,使用正常序列数据训练模型;根据待测序列在训练好的模型中的异常得分,结合自适应阈值技术进行异常判定。实验表明,该方法具有模型容易训练且稳定性强的特点,并且在精确率、召回率、F1值等异常检测性能指标上,比现有的生成式异常检测模型有明显提升。 展开更多
关键词 时间序列数据 变分自编码器 Wasserstein生成对抗网络 异常检测
在线阅读 下载PDF
基于VAE-LSTM模型的航迹异常检测算法 被引量:7
14
作者 常吉亮 谢磊 +1 位作者 赵建伟 杨洋 《交通信息与安全》 CSCD 北大核心 2020年第6期1-8,共8页
为了检测出异常航迹数据从而提高航迹数据挖掘的精确性,将航迹异常检测转化为无监督学习问题,研究了基于VAE-LSTM的航迹异常检测算法。引入残差结构到LSTM中,建立残差门LSTM,通过将变分自编码器中的BP神经网络层替换为残差门LSTM层,实... 为了检测出异常航迹数据从而提高航迹数据挖掘的精确性,将航迹异常检测转化为无监督学习问题,研究了基于VAE-LSTM的航迹异常检测算法。引入残差结构到LSTM中,建立残差门LSTM,通过将变分自编码器中的BP神经网络层替换为残差门LSTM层,实现对变分自编码器的改进,并构建了VAE-LSTM航迹异常检测模型。模型输入为航迹的速度、加速度、真航向和曲率半径运动特征,输出为航迹点特征的重建概率,重建概率小于概率阈值的航迹点为异常航迹点,包含异常航迹点的航迹判定为异常航迹。以长江水域内的航迹数据进行验证并与多种机器学习异常检测算法进行对比。VAE-LSTM航迹异常检测算法的召回率达到了0.935,F1值达到了0.940,各项指标均高于对比算法,验证了方法的有效性。 展开更多
关键词 智能交通 航迹数据 异常检测 变分自编码器 无监督学习
在线阅读 下载PDF
基于全卷积变分自编码网络FCVAE的轴承剩余寿命预测方法 被引量:10
15
作者 张继冬 邹益胜 +1 位作者 蒋雨良 曾大毅 《振动与冲击》 EI CSCD 北大核心 2020年第19期13-18,25,共7页
由于制造工艺、运行环境等的影响,同型号轴承的使用寿命往往存在较大的个体差异性。在轴承剩余寿命预测中,如果从信号中提取的特征的泛化能力不足,将导致模型预测结果稳定性较差。为此,提出一种基于全卷积变分自编码网络(FCVAE)的轴承... 由于制造工艺、运行环境等的影响,同型号轴承的使用寿命往往存在较大的个体差异性。在轴承剩余寿命预测中,如果从信号中提取的特征的泛化能力不足,将导致模型预测结果稳定性较差。为此,提出一种基于全卷积变分自编码网络(FCVAE)的轴承的剩余寿命预测方法。该方法用全卷积神经网络(FCNN)改进变分自编码器(VAE),在降低网络复杂度的同时强化所提取特征的泛化能力,并利用频域信号作为模型输入,以进一步降低特征学习的难度,同时设计加权平均方法平滑预测结果。通过试验数据集对所提方法进行验证,结果表明:该方法预测结果的平均误差相比于传统支持向量回归(SVR)降低了64%,比卷积神经网络(CNN)降低45.5%,比VAE降低47.5%。 展开更多
关键词 全卷积变分自编码 轴承 特征提取 剩余寿命预测
在线阅读 下载PDF
不平衡样本下基于CVAE和CNN的结构损伤识别方法 被引量:1
16
作者 蔡东成 张健飞 《土木工程与管理学报》 2023年第2期108-116,129,共10页
为提高在不平衡样本下结构损伤识别的准确性,提出了一种基于条件变分自编码器(CVAE)数据增强和卷积神经网络(CNN)的结构损伤识别方法。首先,将损伤类别作为约束,构建起基于振动加速度数据的CVAE模型;然后生成损伤加速度数据对初始不平... 为提高在不平衡样本下结构损伤识别的准确性,提出了一种基于条件变分自编码器(CVAE)数据增强和卷积神经网络(CNN)的结构损伤识别方法。首先,将损伤类别作为约束,构建起基于振动加速度数据的CVAE模型;然后生成损伤加速度数据对初始不平衡数据进行扩充;最后使用CNN对扩充数据集进行特征提取和损伤分类识别。通过对悬臂梁振动台实验与钢框架有限元模拟振动实验两类数据集设置不同不平衡比率,进行了CVAE数据增强的效果对比验证。结果表明:CVAE数据增强有助于CNN损伤识别模型对数据特征的提取,能够提高CNN模型的收敛速度,防止模型过拟合;相对于未经数据增强的数据集,所提方法提高了在极不平衡数据下的损伤分类识别准确率,在两类实验数据集上分别提高了15.10%和15.80%。 展开更多
关键词 损伤识别 不平衡样本 数据增强 条件变分自编码器 卷积神经网络
在线阅读 下载PDF
基于VAE预处理和RP-2D CNN的不平衡负荷数据类型辨识方法 被引量:8
17
作者 黄冬梅 吴志浩 +3 位作者 孙园 胡安铎 时帅 孙锦中 《电力系统及其自动化学报》 CSCD 北大核心 2022年第10期66-72,80,共8页
针对负荷数据类型辨识中存在的类别不平衡及特征提取不足的问题,提出一种基于变分自编码器预处理和递归图-二维卷积神经网络的不平衡负荷数据类型辨识方法。首先,利用变分自编码器的过采样方法对少数类样本进行平衡化处理。然后,使用递... 针对负荷数据类型辨识中存在的类别不平衡及特征提取不足的问题,提出一种基于变分自编码器预处理和递归图-二维卷积神经网络的不平衡负荷数据类型辨识方法。首先,利用变分自编码器的过采样方法对少数类样本进行平衡化处理。然后,使用递归图算法将负荷曲线图像化。最后,根据二维卷积神经网络求取分类结果。算例分析表明,变分自编码器能有效地改善负荷数据中存在的类别不平衡问题,提高少数类的召回率;同时,相比于序列输入的分类器模型,经过递归图编码后,其图像输入的二维卷积神经网络模型有更高的分类准确度。 展开更多
关键词 变分自编码器 递归图 类别不平衡 负荷分类
在线阅读 下载PDF
基于Transformer-CVAE的三维人体动画生成方法
18
作者 冯文科 石敏 +1 位作者 朱登明 李兆歆 《计算机科学与探索》 CSCD 北大核心 2023年第9期2137-2147,共11页
三维人体动画生成技术是三维动画领域的核心技术。基于动作捕捉的人体动画生成方法通常制作流程较为繁琐、制作周期较长,无法快速生成人体动画,而现有数据驱动的方法生成的人体动画缺乏真实性,且生成人体运动的种类相对有限。基于此,提... 三维人体动画生成技术是三维动画领域的核心技术。基于动作捕捉的人体动画生成方法通常制作流程较为繁琐、制作周期较长,无法快速生成人体动画,而现有数据驱动的方法生成的人体动画缺乏真实性,且生成人体运动的种类相对有限。基于此,提出了一种基于Transformer-CVAE的三维人体动画生成方法。首先,基于真实的人体运动构建人体运动数据集,并按照运动种类进行类别划分;其次,基于Transformer网络架构学习运动序列的时序依赖关系,进一步引入变分自编码器结构学习运动序列在隐空间上的概率分布;然后,在隐空间施加约束条件进而控制生成人体运动的效果;最后,在AMASS、HumanACT12、UESTC等数据集上进行实验,并从视觉效果与网络性能两方面对方法进行分析。实验结果表明,与现有方法相比,所提方法可生成种类丰富、真实细腻的人体动画,且在STED、RMSE等指标上具有明显的提升。 展开更多
关键词 TRANSFORMER 条件变分自编码器 三维人体动画 计算机图形学
在线阅读 下载PDF
基于VAE-MSGAN网络的复杂细节图像生成方法 被引量:1
19
作者 张德浩 王佳松 +1 位作者 陈禹平 王帅 《机电工程技术》 2021年第6期29-33,共5页
生成式对抗网络被广泛应用于图像生成领域,但其在图像生成时模型不易收敛,导致生成图像的局部细节易出现背景模糊问题。将变分自动编码器与生成式对抗网络相结合,在两者图像生成方面优势相结合的基础上,引入多尺度判别器,提出了VAE-MSGA... 生成式对抗网络被广泛应用于图像生成领域,但其在图像生成时模型不易收敛,导致生成图像的局部细节易出现背景模糊问题。将变分自动编码器与生成式对抗网络相结合,在两者图像生成方面优势相结合的基础上,引入多尺度判别器,提出了VAE-MSGAN网络模型。通过不同尺度的卷积核可以提取到更加丰富的特征信息,并通过加入批标准化(BN)层与特征融合处理,从而加快网络的收敛速度,有利于特征信息的重利用,再将两者提取到的特征信息进行融合,最后将改进的正则化方法应用到目标函数中,减小网络复杂度和过拟合,提升了GAN模型的训练稳定性和图像的局部细节生成质量。对设计的图像生成算法基于Ubuntu16.04环境下利用Tensorflow深度学习框架进行了实现和仿真。对比在不同军事图像类别上的图像生成质量,通过交叉验证证明生成图像与真实图像在深度学习分类器下分类准确率基本一致,验证了所设计网络模型的有效性。 展开更多
关键词 图像样本生成 卷积神经网络 生成式对抗网络 变分自动编码器
在线阅读 下载PDF
基于VAE-GAN算法的信用卡欺诈检测模型
20
作者 严嘉钰 贝世之 章乐 《北京电子科技学院学报》 2022年第4期70-81,共12页
信用卡欺诈检测数据集是典型的离群点分布极度不平衡的高维数据集,信用卡交易中被盗刷的交易占比非常小,但每一笔被盗刷的交易都影响重大。针对传统离群点检测算法难以学习到极度不平衡的高维数据集中离群点的分布模式,导致检测率低的问... 信用卡欺诈检测数据集是典型的离群点分布极度不平衡的高维数据集,信用卡交易中被盗刷的交易占比非常小,但每一笔被盗刷的交易都影响重大。针对传统离群点检测算法难以学习到极度不平衡的高维数据集中离群点的分布模式,导致检测率低的问题,本文应用一种基于变分自编码器(Variational Auto-Encoder,VAE)和生成对抗网络(Generative Adversarial Network,GAN)相结合的VAE-GAN算法进行无监督学习,算法首先将数据集输入VAE型生成器中进行训练,生成大量潜在的离群点,然后令判别器学习正常点与离群点的分类边界,最后将测试数据输入训练后的模型中,将离群值高的测试数据判定为离群点。在信用卡欺诈检测数据集上与现有的无监督学习所得结果相比,VAE-GAN在尽可能更多地检测出离群值的同时,尽量减少误判,AUC达到0.9581,Recall达到0.9118,ACC为0.9468,优于目前的最优模型,证明VAE-GAN算法在信用卡欺诈检测中的优越性。 展开更多
关键词 信用卡欺诈检测 变分自编码器 生成对抗网络 无监督学习
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部