The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigat...The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigated. The heat treatment at 1050 °C is favorable to improve the interface bonding between the columnar structures due to the disappearance of the intergranular gaps. Comparing with the thin NiCoCrAl alloy sheet before heat treatment, the Ni3Al phase appears in the NiCoCrAl alloy sheet after heat treatment, which is favorable to improve the interface bonding between the columnar structures. The increase in the tensile strength and elongation is attributed to the improvement of the interface bonding between the columnar structures. The residual stress in the NiCoCrAl alloy sheet after heat treatment is reduced significantly, which also confirms that the interface bonding is improved by the heat treatment.展开更多
A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical ...A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical properties of the alloy sheet.Differential thermal analysis(DTA) was used to examine the thermal stability of the as-deposited sheet.Element contents,phase composition and microstructure investigations on as-deposited and heat treated specimens were performed by X-ray fluorescence spectrometer(XRF),X-ray diffraction(XRD) and scanning electron microscopy(SEM).Tensile tests were conducted at room temperature on specimens as-deposited and heat treated.The results show that the as-deposited sheet is composed of equiaxed grains on the substrate side and columnar grains on the evaporation side.The as-deposited sheet shows poor ductility due to micropores between columnar grains.The strength and ductility can be improved effectively by annealing at 800°C for 3 h.For samples treated at 1100°C,the strength drops down due to the precipitates of Y3Al5O12(YAG).展开更多
Sodium beta alumina(Na-β-alumina) films were synthesized by heat treatment of NaAl6O(9.5)and γ-NaA1O2 films at temperatures of 1 373-1 573 K.Single-phase γ-NaA1O2 and NaAl6O(9.5) films were prepared by laser ...Sodium beta alumina(Na-β-alumina) films were synthesized by heat treatment of NaAl6O(9.5)and γ-NaA1O2 films at temperatures of 1 373-1 573 K.Single-phase γ-NaA1O2 and NaAl6O(9.5) films were prepared by laser chemical vapor deposition at the deposition temperatures of 976 and 1 100 K,respectively.Subsequent heat treatment of the films resulted in the formation of Na-β-alumina with α-Al2O3 at temperatures above 1 373 K for NaAl6O(9.5) and 1 473 K for γ-NaA1O2.On heat treatment at temperatures of 1 473-1 573 K,the faceted morphology with terraces of the as-deposited(110)-oriented γ-NaAlO2 films transformed to a porous morphology with platelet grains comprising Na-β-alumina and α-Al2O3.On heat treatment at temperatures of1 373-1 473 K,the pyramidal,faceted grains of as-deposited NaAl6O(9.5) films transformed to planer,shapeanisotropic morphology in the film of mixed Na-β-alumina and α-Al2O3.A dense morphology was observed in both the as-deposited and heat-treated NaAl6O(9.5) films.展开更多
基金Projects(51002019,91016024,51102031)supported by the National Natural Science Foundation of China
文摘The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigated. The heat treatment at 1050 °C is favorable to improve the interface bonding between the columnar structures due to the disappearance of the intergranular gaps. Comparing with the thin NiCoCrAl alloy sheet before heat treatment, the Ni3Al phase appears in the NiCoCrAl alloy sheet after heat treatment, which is favorable to improve the interface bonding between the columnar structures. The increase in the tensile strength and elongation is attributed to the improvement of the interface bonding between the columnar structures. The residual stress in the NiCoCrAl alloy sheet after heat treatment is reduced significantly, which also confirms that the interface bonding is improved by the heat treatment.
文摘A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical properties of the alloy sheet.Differential thermal analysis(DTA) was used to examine the thermal stability of the as-deposited sheet.Element contents,phase composition and microstructure investigations on as-deposited and heat treated specimens were performed by X-ray fluorescence spectrometer(XRF),X-ray diffraction(XRD) and scanning electron microscopy(SEM).Tensile tests were conducted at room temperature on specimens as-deposited and heat treated.The results show that the as-deposited sheet is composed of equiaxed grains on the substrate side and columnar grains on the evaporation side.The as-deposited sheet shows poor ductility due to micropores between columnar grains.The strength and ductility can be improved effectively by annealing at 800°C for 3 h.For samples treated at 1100°C,the strength drops down due to the precipitates of Y3Al5O12(YAG).
基金Funded by the Ministry of Education,Culture,Sports,Science and Technology,a Grant-in-Aid for Challenging Exploratory Research(No.26560235)the ARCMG–IMR Cooperative Program(No.14G0402)of Tohoku Universitythe China Scholarship Council and the 111 Project(No.B13035)of China
文摘Sodium beta alumina(Na-β-alumina) films were synthesized by heat treatment of NaAl6O(9.5)and γ-NaA1O2 films at temperatures of 1 373-1 573 K.Single-phase γ-NaA1O2 and NaAl6O(9.5) films were prepared by laser chemical vapor deposition at the deposition temperatures of 976 and 1 100 K,respectively.Subsequent heat treatment of the films resulted in the formation of Na-β-alumina with α-Al2O3 at temperatures above 1 373 K for NaAl6O(9.5) and 1 473 K for γ-NaA1O2.On heat treatment at temperatures of 1 473-1 573 K,the faceted morphology with terraces of the as-deposited(110)-oriented γ-NaAlO2 films transformed to a porous morphology with platelet grains comprising Na-β-alumina and α-Al2O3.On heat treatment at temperatures of1 373-1 473 K,the pyramidal,faceted grains of as-deposited NaAl6O(9.5) films transformed to planer,shapeanisotropic morphology in the film of mixed Na-β-alumina and α-Al2O3.A dense morphology was observed in both the as-deposited and heat-treated NaAl6O(9.5) films.