The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensio...The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.展开更多
Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’...Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’s mental health and well-being, as well as to achieve ecological understanding and its impact on urban infrastructure. Thus, the aim of the present study is to carry out a survey on both urban afforestation structure and on its social impact on a Brazilian municipality. It also sought to understand the damages caused by these species to urban infrastructure in comparison to data collected in 2009, to assess forest coverage in this municipality and tree planting underutilized capacity. Accordingly, all the streets in this municipality’s urban area, the botanical data of each tree and its damage to the city’s infrastructure and phytosanitary conditions were surveyed (from 1 to 5). Data were compared to those from the 2009 census, and social issues were analyzed. In total, 5044 individuals belonging to 189 species were recorded. The most often found species were Lagerstroemia indica and Murraya paniculata. Out of the total number of trees, 458 trees scored at least one score “5” in one of the criteria, and this number represents 8.9% of the total of the trees. L. indica was the species accounting for the highest rates of phytosanitary and infrastructure issues. Data comparison evidenced that urban tree canopy lost 25% of its vegetation between the two measurements taken herein, but the number of species has increased. When it comes to damages, many trees started showing phytosanitary issues or damage to urban infrastructure.展开更多
The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urb...The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.展开更多
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night tim...An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.展开更多
Based on some advanced urban parameterization schemes for mesoscale model,a new urban canopy parameterization (UCP) for MM5 is developed.The UCP takes into account the impacts of urban infrastructure and anthropogenic...Based on some advanced urban parameterization schemes for mesoscale model,a new urban canopy parameterization (UCP) for MM5 is developed.The UCP takes into account the impacts of urban infrastructure and anthropogenic activity on the dynamic,thermal structures of urban surface layer and the urban surface energy budget in a more rational way according to conformation of MMS.The UCP is implemented in MM5 and validated by IOP data in 2001 winter BECAPEX and automatic meteorological station data in Beijing area.The results illustrate that UCP versus traditional urban parameterization in MM5,it can make MM5 reproduce main characteristics of winter UBL in Beijing,which include urban heat island and its diurnal evolvement,nocturnal elavated inversion in downtown area,and some dynamic stuctures such as TKE peak at the top of urban canopy,lower wind speed in urban surface layer and so on.展开更多
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June t...This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.展开更多
An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longw...An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.展开更多
Accurate modeling of urban climate is essential to predict potential environmental risks in cities.Urban datasets,such as urban land use and urban canopy parameters(UCPs),are key input data for urban climate models an...Accurate modeling of urban climate is essential to predict potential environmental risks in cities.Urban datasets,such as urban land use and urban canopy parameters(UCPs),are key input data for urban climate models and largely affect their performance.However,access to reliable urban datasets is a challenge,especially in fast urbanizing countries.In this study,we developed a high-resolution national urban dataset in China(NUDC)for the WRF/urban modeling system and evaluated its effect on urban climate modeling.Specifically,an optimization method based on building morphology was proposed to classify urban land use types.The key UCPs,including building height and width,street width,surface imperviousness,and anthropogenic heat flux,were calculated for both single-layer Urban Canopy Model(UCM)and multiple-layer Building Energy Parameterization(BEP).The results show that the derived morphological-based urban land use classification could better reflect the urban characteristics,compared to the socioeconomic-function-based classification.The UCPs varied largely in spatial within and across the cities.The integration of the developed urban land use and UCPs datasets significantly improved the representation of urban canopy characteristics,contributing to a more accurate modeling of near-surface air temperature,humidity,and wind in urban areas.The UCM performed better in the modeling of air temperature and humidity,while the BEP performed better in the modeling of wind speed.The newly developed NUDC can advance the study of urban climate and improve the prediction of potential urban environmental risks in China.展开更多
Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
The combined effects of global warming and the urban heat islands exacerbate the risk of urban heat stress. It is crucial to implement effective cooling measures in urban areas to improve the comfort of the thermal en...The combined effects of global warming and the urban heat islands exacerbate the risk of urban heat stress. It is crucial to implement effective cooling measures in urban areas to improve the comfort of the thermal environment. In this study, the Weather Research and Forecasting Model(WRF), coupled with a single-layer Urban Canopy Model(UCM), was used to study the impact of heat mitigation strategies. In addition, a 5-km resolution land-cover dataset for China(ChinaLC), which is based on satellite remote sensing data, was adjusted and used, and 18 groups of numerical experiments were designed, to increase the albedo and vegetation fraction of roof/ground parameters. The experiments were conducted for four heatwave events that occurred in the summer of 2013 in the Yangtze River Delta urban agglomeration of China. The simulated results demonstrated that, for the single roof/ground schemes, the mitigation effects were directly proportional to the albedo and greening. Among all the experimental schemes, the superposed schemes presented better cooling effects. For the ground greening scheme, with similar net radiation flux and latent heat flux, its storage heat was lower than that of the roof greening scheme, resulting in more energy flux into the atmosphere, and its daytime cooling effect was not as good as that of the roof greening scheme. In terms of human thermal comfort(HTC), the improvement achieved by the ground greening scheme was better than any other single roof/ground schemes, because the increase in the relative humidity was small. The comprehensive evaluation of the mitigation effects of different schemes on the thermal environment presented in this paper provides a theoretical basis for improving the urban environment through rational urban planning and construction.展开更多
An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate...An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.展开更多
How does the urban spatial landscape(USL)pattern affect the land surface urban heat islands(SUHIs)and canopy urban heat islands(CUHIs)?Based on satellite and meteorological observations,this case study compares the im...How does the urban spatial landscape(USL)pattern affect the land surface urban heat islands(SUHIs)and canopy urban heat islands(CUHIs)?Based on satellite and meteorological observations,this case study compares the impacts of the USL pattern on SUHI and CUHI in the central urban area(CUA)of Beijing using the satellite land-surface-temperature product and hourly temperature data from automatic meteorological stations from 2009 to 2018.Eleven USL metrics—building height(BH),building density(BD),standard deviation of building height(BSD),floor area ratio(FAR),frontal area index(FAI),roughness length(RL),sky view factor(SVF),urban fractal dimension(FD),vegetation coverage(VC),impervious coverage(IC),and albedo(AB)—with a 500-m spatial resolution in the CUA are extracted for comparative analysis.The results show that SUHI is higher than CUHI at night,and SUHI is only consistent with CUHI at spatial-temporal scales at night,particularly in winter.Spatially,all 11 metrics are strongly correlated with both the SUHI and CUHI at night,with stronger correlation between most metrics and SUHI.VC,AB,and SVF have the greatest impact on both the SUHI and CUHI.High SUHI and CUHI values tend to appear in areas with BD≥0.26,VC≤0.09,AB≤0.09,and SVF≤0.67.In summer,most metrics have a greater impact on the SUHI than CUHI;the opposite is observed in winter.SUHI variation is affected primarily by VC in summer and by VC and AB in winter,which is different for the CUHI variation.The collective contribution of all 11metrics to SUHI spatial variation in summer(61.8%)is higher than that to CUHI;however,the opposite holds in winter and for the entire year,where the cumulative contribution of the factors accounts for 66.6%and 49.6%,respectively,of the SUHI variation.展开更多
Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy ...Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments areperformed to investigate the effects of urban influence, surrounding terrain, and different extentof urbanization on urban boundary layer structures over Beijing area. The results of factorseparation experiments of urban influence indicate that the total effect of urban influence, whichis the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, isresponsible for the formation of main UBL features over Beijing area. Meanwhile, the relativeimportance of thermal and mechanical factors of urban infrastructure and interaction between thermaland mechanical factors for the formation and evolution of UBL over the Beijing area are alsoexplored. The results show that, during nighttime, mechanical factors are responsible for maincharacteristics of nocturnal urban boundary layer such as elevated inversion layer over downtownarea, smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak atthe top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structureof UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area.The interaction between mechanical and thermal factors plays an important role in the formation andevolution of UBL, but its specific characteristics of mechanisms are complex. The results ofsurrounding terrain experiment show that terrain surrounding Beijing area not only determines thecharacteristic of prevailing airflow over Beijing area, but also has obvious effect on thermalstructure of UBL, such as the distribution of elevated inversion and urban heat island, and makesthem with special localization feature. The results of different extent urbanization experiment showthat with the increase in the density and height of buildings in Beijing area, wind speed woulddecrease and TKE increase. Meanwhile, the bottom of nocturnal elevated inversion would increase indowntown area, and the intensity of urban heat island would strengthen, and even probably is obviousin the daytime.展开更多
Wind tunnel experiment and steady-state Reynolds-averaged Navier-Stokes(RANS)approaches are used to examine the urban boundary layer(UBL)development above Kowloon Peninsula,Hong Kong Special Administrative Region(HKSA...Wind tunnel experiment and steady-state Reynolds-averaged Navier-Stokes(RANS)approaches are used to examine the urban boundary layer(UBL)development above Kowloon Peninsula,Hong Kong Special Administrative Region(HKSAR).The detailed urban morphology is resolved by computational fluid dynamics(CFD)and is fabricated by 3D-printing(reduced scale)for wind tunnel experiments.Different from the majority existing results based on idealized,homogeneous urban geometries,it was found that the wind and turbulence in the UBL over downtown Kowloon are characterized by the wake behind several high-rise buildings.In particular,local maxima of turbulence kinetic energy(TKE)and shear stress are found at the roof level of those high-rise buildings.In the downstream region where the flows are already adjusted to the urban surfaces,the urban roughness sublayer(URSL)can be further divided into two layers based on the structures of the mixing length/m,effective drag Dx and dispersive stress.In the lower URSL(z<100 m),lm is rather uniform,and the Reynolds stress and dispersive stress are comparable.In the upper URSL(100 m z s 300 m),on the contrary,lm is peaked at the mid-height and the magnitude of dispersive stress is smaller than that of the Reynolds stress(<30%).The effective drag Dx is negligible in the upper URSL.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11472272 and 91215302)the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201206041)
文摘The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.
文摘Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’s mental health and well-being, as well as to achieve ecological understanding and its impact on urban infrastructure. Thus, the aim of the present study is to carry out a survey on both urban afforestation structure and on its social impact on a Brazilian municipality. It also sought to understand the damages caused by these species to urban infrastructure in comparison to data collected in 2009, to assess forest coverage in this municipality and tree planting underutilized capacity. Accordingly, all the streets in this municipality’s urban area, the botanical data of each tree and its damage to the city’s infrastructure and phytosanitary conditions were surveyed (from 1 to 5). Data were compared to those from the 2009 census, and social issues were analyzed. In total, 5044 individuals belonging to 189 species were recorded. The most often found species were Lagerstroemia indica and Murraya paniculata. Out of the total number of trees, 458 trees scored at least one score “5” in one of the criteria, and this number represents 8.9% of the total of the trees. L. indica was the species accounting for the highest rates of phytosanitary and infrastructure issues. Data comparison evidenced that urban tree canopy lost 25% of its vegetation between the two measurements taken herein, but the number of species has increased. When it comes to damages, many trees started showing phytosanitary issues or damage to urban infrastructure.
基金supported by National Natural Science Foundation of China(Grant No.41175015)Ministry of Science and Technology of China(Grant Nos.2012BAC22B00 and GYHY200906026)
文摘The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.
基金Supportly by the National Natural Science Foundation of China under Grant No. 40333027
文摘An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.
基金supported by the"Air,Water and Soil Environmental Pollution Mechanism and Its Regulating-Controlling Principles in Beijing and Its Ambient Areas"of the State Plan for Key Basic Research of China (No.G1999045700)
文摘Based on some advanced urban parameterization schemes for mesoscale model,a new urban canopy parameterization (UCP) for MM5 is developed.The UCP takes into account the impacts of urban infrastructure and anthropogenic activity on the dynamic,thermal structures of urban surface layer and the urban surface energy budget in a more rational way according to conformation of MMS.The UCP is implemented in MM5 and validated by IOP data in 2001 winter BECAPEX and automatic meteorological station data in Beijing area.The results illustrate that UCP versus traditional urban parameterization in MM5,it can make MM5 reproduce main characteristics of winter UBL in Beijing,which include urban heat island and its diurnal evolvement,nocturnal elavated inversion in downtown area,and some dynamic stuctures such as TKE peak at the top of urban canopy,lower wind speed in urban surface layer and so on.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
基金Natural Science Foundation of China(40775068)Specialized Projects of Scientific Research for Public Welfare Industry(Meteorology)+3 种基金Open Projects of Key National Laboratories for Disasters-causing Weather(GYHY200706014GYHY200906026)Science Foundation of China(2009LASW-B03)Foundation for Scientific Research on Tropical and Marine Meteorology
文摘This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.
文摘An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.
基金supported by the Liaoning Provincial Natural Science Foundation of China(Grant No.2020-MS-027)。
文摘Accurate modeling of urban climate is essential to predict potential environmental risks in cities.Urban datasets,such as urban land use and urban canopy parameters(UCPs),are key input data for urban climate models and largely affect their performance.However,access to reliable urban datasets is a challenge,especially in fast urbanizing countries.In this study,we developed a high-resolution national urban dataset in China(NUDC)for the WRF/urban modeling system and evaluated its effect on urban climate modeling.Specifically,an optimization method based on building morphology was proposed to classify urban land use types.The key UCPs,including building height and width,street width,surface imperviousness,and anthropogenic heat flux,were calculated for both single-layer Urban Canopy Model(UCM)and multiple-layer Building Energy Parameterization(BEP).The results show that the derived morphological-based urban land use classification could better reflect the urban characteristics,compared to the socioeconomic-function-based classification.The UCPs varied largely in spatial within and across the cities.The integration of the developed urban land use and UCPs datasets significantly improved the representation of urban canopy characteristics,contributing to a more accurate modeling of near-surface air temperature,humidity,and wind in urban areas.The UCM performed better in the modeling of air temperature and humidity,while the BEP performed better in the modeling of wind speed.The newly developed NUDC can advance the study of urban climate and improve the prediction of potential urban environmental risks in China.
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金Supported by the National Natural Science Foundation of China (42021004 and 42175032)。
文摘The combined effects of global warming and the urban heat islands exacerbate the risk of urban heat stress. It is crucial to implement effective cooling measures in urban areas to improve the comfort of the thermal environment. In this study, the Weather Research and Forecasting Model(WRF), coupled with a single-layer Urban Canopy Model(UCM), was used to study the impact of heat mitigation strategies. In addition, a 5-km resolution land-cover dataset for China(ChinaLC), which is based on satellite remote sensing data, was adjusted and used, and 18 groups of numerical experiments were designed, to increase the albedo and vegetation fraction of roof/ground parameters. The experiments were conducted for four heatwave events that occurred in the summer of 2013 in the Yangtze River Delta urban agglomeration of China. The simulated results demonstrated that, for the single roof/ground schemes, the mitigation effects were directly proportional to the albedo and greening. Among all the experimental schemes, the superposed schemes presented better cooling effects. For the ground greening scheme, with similar net radiation flux and latent heat flux, its storage heat was lower than that of the roof greening scheme, resulting in more energy flux into the atmosphere, and its daytime cooling effect was not as good as that of the roof greening scheme. In terms of human thermal comfort(HTC), the improvement achieved by the ground greening scheme was better than any other single roof/ground schemes, because the increase in the relative humidity was small. The comprehensive evaluation of the mitigation effects of different schemes on the thermal environment presented in this paper provides a theoretical basis for improving the urban environment through rational urban planning and construction.
基金funded by National Nat-ural Science Foundation of China(Grants Nos.40505002,40652001,and 40775015)Beijing Natural Science Foun-dation(Grant No.8051002)+1 种基金Beijing New Star Project of Science and Technology(Grant No.2005A03)the Ministry of Science and Technology of China(Grant Nos.2008BAC37B04,2006BAJ02A01,and GYHY200906035)
文摘An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.
基金Supported by the National Natural Science Foundation of China (41871028)Opening Fund of National Data Center for Earth Observation Science (NODAOP2021004)Beijing Natural Science Fund (8192020)。
文摘How does the urban spatial landscape(USL)pattern affect the land surface urban heat islands(SUHIs)and canopy urban heat islands(CUHIs)?Based on satellite and meteorological observations,this case study compares the impacts of the USL pattern on SUHI and CUHI in the central urban area(CUA)of Beijing using the satellite land-surface-temperature product and hourly temperature data from automatic meteorological stations from 2009 to 2018.Eleven USL metrics—building height(BH),building density(BD),standard deviation of building height(BSD),floor area ratio(FAR),frontal area index(FAI),roughness length(RL),sky view factor(SVF),urban fractal dimension(FD),vegetation coverage(VC),impervious coverage(IC),and albedo(AB)—with a 500-m spatial resolution in the CUA are extracted for comparative analysis.The results show that SUHI is higher than CUHI at night,and SUHI is only consistent with CUHI at spatial-temporal scales at night,particularly in winter.Spatially,all 11 metrics are strongly correlated with both the SUHI and CUHI at night,with stronger correlation between most metrics and SUHI.VC,AB,and SVF have the greatest impact on both the SUHI and CUHI.High SUHI and CUHI values tend to appear in areas with BD≥0.26,VC≤0.09,AB≤0.09,and SVF≤0.67.In summer,most metrics have a greater impact on the SUHI than CUHI;the opposite is observed in winter.SUHI variation is affected primarily by VC in summer and by VC and AB in winter,which is different for the CUHI variation.The collective contribution of all 11metrics to SUHI spatial variation in summer(61.8%)is higher than that to CUHI;however,the opposite holds in winter and for the entire year,where the cumulative contribution of the factors accounts for 66.6%and 49.6%,respectively,of the SUHI variation.
基金Supported by the Beijing Urban Environment Project (973 Project).
文摘Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments areperformed to investigate the effects of urban influence, surrounding terrain, and different extentof urbanization on urban boundary layer structures over Beijing area. The results of factorseparation experiments of urban influence indicate that the total effect of urban influence, whichis the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, isresponsible for the formation of main UBL features over Beijing area. Meanwhile, the relativeimportance of thermal and mechanical factors of urban infrastructure and interaction between thermaland mechanical factors for the formation and evolution of UBL over the Beijing area are alsoexplored. The results show that, during nighttime, mechanical factors are responsible for maincharacteristics of nocturnal urban boundary layer such as elevated inversion layer over downtownarea, smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak atthe top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structureof UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area.The interaction between mechanical and thermal factors plays an important role in the formation andevolution of UBL, but its specific characteristics of mechanisms are complex. The results ofsurrounding terrain experiment show that terrain surrounding Beijing area not only determines thecharacteristic of prevailing airflow over Beijing area, but also has obvious effect on thermalstructure of UBL, such as the distribution of elevated inversion and urban heat island, and makesthem with special localization feature. The results of different extent urbanization experiment showthat with the increase in the density and height of buildings in Beijing area, wind speed woulddecrease and TKE increase. Meanwhile, the bottom of nocturnal elevated inversion would increase indowntown area, and the intensity of urban heat island would strengthen, and even probably is obviousin the daytime.
基金supported by the RGC Theme-based Research Scheme(TRS)T24-504/17-Nthe RGC Collaborative Research Fund(CRF)C706418G+1 种基金as well as the National Natural Science Foundation of ChinaMacao Science and Technology Development Joint Fund(NSFC-FDCT,No.41861164027).
文摘Wind tunnel experiment and steady-state Reynolds-averaged Navier-Stokes(RANS)approaches are used to examine the urban boundary layer(UBL)development above Kowloon Peninsula,Hong Kong Special Administrative Region(HKSAR).The detailed urban morphology is resolved by computational fluid dynamics(CFD)and is fabricated by 3D-printing(reduced scale)for wind tunnel experiments.Different from the majority existing results based on idealized,homogeneous urban geometries,it was found that the wind and turbulence in the UBL over downtown Kowloon are characterized by the wake behind several high-rise buildings.In particular,local maxima of turbulence kinetic energy(TKE)and shear stress are found at the roof level of those high-rise buildings.In the downstream region where the flows are already adjusted to the urban surfaces,the urban roughness sublayer(URSL)can be further divided into two layers based on the structures of the mixing length/m,effective drag Dx and dispersive stress.In the lower URSL(z<100 m),lm is rather uniform,and the Reynolds stress and dispersive stress are comparable.In the upper URSL(100 m z s 300 m),on the contrary,lm is peaked at the mid-height and the magnitude of dispersive stress is smaller than that of the Reynolds stress(<30%).The effective drag Dx is negligible in the upper URSL.