Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their cap...Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.展开更多
This paper proposes a 3-D convection-heat dispersion model for a confined aquifer. The governing equation of the model contains not only the traditional convection and conduction terms, but also a heat dispersion term...This paper proposes a 3-D convection-heat dispersion model for a confined aquifer. The governing equation of the model contains not only the traditional convection and conduction terms, but also a heat dispersion term which has often been overlooked in many similar researches. The model is used to describe a series of aquifer thermal energy storage experiments conducted at the Shanghai experimental site, including single-well injection, double-well injection/production and multiple-well injection/prodution tests. The simulated temperatures agree very well with the field data (relative error: 2.8%-4.5%). A detailed description of the model is given, followed by a detailed comparison of simulated and measured temperature distributions.展开更多
The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energ...The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.展开更多
Aquifer thermal energy storage is a versatile method for regulating building temperatures,utilizing groundwater as a medium for both summer cooling and winter heating.Water has high thermal conductivity and specific h...Aquifer thermal energy storage is a versatile method for regulating building temperatures,utilizing groundwater as a medium for both summer cooling and winter heating.Water has high thermal conductivity and specific heat but is corrosive,creating a mineral build-up that causes scaling.Additionally,its high freezing point presents operational challenges.Vegetable oils emerge as a promising alternative,owing to their lower freezing points.In light of environmental concerns,researchers are exploring vegetable oils as substitutes for petroleum-derived mineral oils.This paper is intended as an initial study using vegetable oils,i.e.coconut and sunflower oil,as the heat-transfer medium in aquifer thermal energy storage.The experiments assess the heat-transfer coefficient of coconut,sunflower,mineral,and synthetic oils when exposed to the same heat source.The study also evaluates the impact of introducing micro-carbon(graphite and charcoal)to the oils.Results indicate that sunflower oil has the highest heat-transfer coefficient of 374.4 W/m^(2) K among the oils,making it suitable for aquifer thermal energy storage applications.Furthermore,augmenting sunflower oil with charcoal powder enhances its performance by increasing the heat-transfer coefficient to 474.9 W/m^(2) K,or a 27%increase.In contrast,coconut oil proves unsuitable for aquifer thermal energy storage deployment because of its low heat-transfer coefficient of 293.7 W/m^(2) K.The heat-transfer coefficient of synthetic oil increases with graphite powder but decreases with charcoal powder introduction.展开更多
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
文摘Underground hydrogen storage is critical for renewable energy integration and sustainability.Saline aquifers and depleted oil and gas reservoirs represent viable large-scale hydrogen storage solutions due to their capacity and availability.This paper provides a comparative analysis of the current status of hydrogen storage in various environments.Additionally,it assesses the geological compatibility,capacity,and security of these storage environments with minimal leakage and degradation.An in-depth analysis was also conducted on the economic and environmental issues that impact the hydrogen storage.In addition,the capacity of these structures was also clarified,and it is similar to storing carbon dioxide,except for the cushion gas that is injected with hydrogen to provide pressure when withdrawing from the store to increase demand.This research also discusses the pros and cons of hydrogen storage in saline aquifers and depleted oil and gas reservoirs.Advantages include numerous storage sites,compatibility with existing infrastructure,and the possibility to repurpose declining oil and gas assets.Specifically,it was identified that depleted gas reservoirs are better for hydrogen gas storage than depleted oil reservoirs because hydrogen gas may interact with the oil.The saline aquifers rank third because of uncertainty,limited capacity,construction and injection costs.The properties that affect the hydrogen injection process were also discussed in terms of solid,fluid,and solid-fluid properties.In all structures,successful implementation requires characterizing sites,monitoring and managing risks,and designing efficient storage methods.The findings expand hydrogen storage technology and enable a renewable energy-based energy system.
基金This project is partly supported by the National Natural Science Foundation of China.
文摘This paper proposes a 3-D convection-heat dispersion model for a confined aquifer. The governing equation of the model contains not only the traditional convection and conduction terms, but also a heat dispersion term which has often been overlooked in many similar researches. The model is used to describe a series of aquifer thermal energy storage experiments conducted at the Shanghai experimental site, including single-well injection, double-well injection/production and multiple-well injection/prodution tests. The simulated temperatures agree very well with the field data (relative error: 2.8%-4.5%). A detailed description of the model is given, followed by a detailed comparison of simulated and measured temperature distributions.
文摘The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.
文摘Aquifer thermal energy storage is a versatile method for regulating building temperatures,utilizing groundwater as a medium for both summer cooling and winter heating.Water has high thermal conductivity and specific heat but is corrosive,creating a mineral build-up that causes scaling.Additionally,its high freezing point presents operational challenges.Vegetable oils emerge as a promising alternative,owing to their lower freezing points.In light of environmental concerns,researchers are exploring vegetable oils as substitutes for petroleum-derived mineral oils.This paper is intended as an initial study using vegetable oils,i.e.coconut and sunflower oil,as the heat-transfer medium in aquifer thermal energy storage.The experiments assess the heat-transfer coefficient of coconut,sunflower,mineral,and synthetic oils when exposed to the same heat source.The study also evaluates the impact of introducing micro-carbon(graphite and charcoal)to the oils.Results indicate that sunflower oil has the highest heat-transfer coefficient of 374.4 W/m^(2) K among the oils,making it suitable for aquifer thermal energy storage applications.Furthermore,augmenting sunflower oil with charcoal powder enhances its performance by increasing the heat-transfer coefficient to 474.9 W/m^(2) K,or a 27%increase.In contrast,coconut oil proves unsuitable for aquifer thermal energy storage deployment because of its low heat-transfer coefficient of 293.7 W/m^(2) K.The heat-transfer coefficient of synthetic oil increases with graphite powder but decreases with charcoal powder introduction.