期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Large-scale experimental investigation of the effects of gas explosions in underdrains 被引量:2
1
作者 Longfei Hou Yuanzhi Li +3 位作者 Xinming Qian Chi-Min Shu Mengqi Yuan Weike Duanmu 《Journal of Safety Science and Resilience》 CSCD 2021年第2期90-99,共10页
This study involved the construction and explosion of a large-scale(80-meter-long)underdrain and detailed investigations of the damaging impacts of a gas explosion to provide an experimental foundation for similarity ... This study involved the construction and explosion of a large-scale(80-meter-long)underdrain and detailed investigations of the damaging impacts of a gas explosion to provide an experimental foundation for similarity modeling and infrastructural designs.The experiment vividly recreated the scene and explosion damage of the"11.22″explosion accident in Qingdao,China,thus allowing for evaluations of the movements and destruction of the cover plates.The damage mechanism was determined by analyzing the overpressure curves inside and outside the underground canal.It was determined that the cover plates were first lifted by the precursor wave,which induced a maximum overpressure of 0.06 MPa and resulted in explosion venting.The pressure entered the deflagration stage at the end of the explosion.The combustion wave overpressure reached 3.115 MPa close to the initiation point,and had a significant influence on the projectile energy of the cover plates there.Overall,64%of the cover plates were only affected by the precursor wave,while 36%of the cover plates were subjected to both the precursor wave and the combustion wave;these cover plates were severely damaged.The results of this study provide fundamental insights relevant to the prevention and control of underdrain gas explosions. 展开更多
关键词 Damage mechanism Overpressure curve Underdrain explosion Explosion venting Precursor wave
原文传递
Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions 被引量:1
2
作者 Ruifen Liu Elizabeth Fassman-Beck 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期83-92,共10页
Hydrologic performance of bioretention systems is significantly influenced by the media composition and underdrain configuration. This research measured hydrologic performance of column-scale bioretention systems duri... Hydrologic performance of bioretention systems is significantly influenced by the media composition and underdrain configuration. This research measured hydrologic performance of column-scale bioretention systems during a synthetic design storm of 25.9 mm, assuming a system area:catchment area ratio of 5%. The laboratory experiments involved two different engineered media and two different drainage configurations. Results show that the two engineered mediawith different sand aggregates were able to retain about 36% of the inflow volume with tree drainage conlaguratlon. However, the medium with marine sand is better at delaying the occurrence of drainage than the one with pumice sand, denoting the better detention ability of the former. For both engineered media, an underdrain configuration with internal water storage (IWS) zone lowered drainage volume and peak drainage rate as well as delayed the occurrence of drainage and peak drainage rate, as compared to a free drainage configuration. The USEPA SWMM v5.1.11 model was applied for the tree drainage configuration case, and there is a reasonable fit between observed and modeled drainag.e-rates when media-specific characteristics are available. For the IWS drainage configuration case, air entrapment was observed to occur in the engineered medium with manne sand. F^lhng ot an IWS zone is most likely to be influenced by many factors, such as the structure of the bioretention system, medium physical and hydraulic properties, and inflow characteristics. More research is needed on the analysis and modeling of hydrologic process in bioretention with IWS drainage configuration. 展开更多
关键词 Bioretention Hydrologic process Underdrain configuration SWMM Modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部