The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose di...The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose direction rotates continuously and compression stress on seabed can be calculated by the use of small amplitude wave theory. With relationship curves of saturated silt of liquefaction cycles and cyclic stress ratios obtained by cyclic triaxial-torsional coupling shear tests and curve fitting method to different data points of relative density, it is suggested that the cyclic stress ratio corresponding to constant liquefaction impedance be taken as the critical cyclic stress ratio which implies liquefaction. There exists a linear relationship between critical cyclic stress ratio and relative density under different relative densities. Empirical formula for critical cyclic stress ratios of seabed liquefaction induced by wave loading under different relative densities is established. The possibility of seabed silt liquefaction and its influence factors are analyzed based on the small-amplitude wave theory and the data acquired in laboratory tests.展开更多
The in situ pore pressure response of silt under wave action is a complex process.However,this process has not been well studied because of limited field observation techniques.The dynamic response process is closely ...The in situ pore pressure response of silt under wave action is a complex process.However,this process has not been well studied because of limited field observation techniques.The dynamic response process is closely related to engineering geological hazards;thus,this process must be urgently explored.A long-term in situ observational study of the silt sediment pore water pressure response process under wave action was conducted in the subaqueous Yellow River Delta.The response characteristics of pore water pressure are affected by tidal level and wave height.Tidal level affects the overall trend of the pore water pressure response,while wave height influences the amplitude of the pore water pressure response.This study revealed a significant lag effect in the pore pressure response.The transient pore pressure in the seabed did not respond immediately to the wave-induced pressure stress on the seabed surface.This phenomenon may be attributed to the change in soil permeability.The maximum response depth was approximately 0.5 m with a 2 m wave height.A concept model of silt soil pore pressure response under different types of wave action was developed.The accumulation rate of the pore pressure is less than the dissipation rate;thus,the developed model highlights the oscillation pore pres-sure response mechanism.The highlighted response process is of considerable importance to transient liquefaction and the startup process of pore pressure response.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50639010 and 50909039)the Fundamental Research Funds for the Central Universities(Grant No. 2010B04514)
文摘The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose direction rotates continuously and compression stress on seabed can be calculated by the use of small amplitude wave theory. With relationship curves of saturated silt of liquefaction cycles and cyclic stress ratios obtained by cyclic triaxial-torsional coupling shear tests and curve fitting method to different data points of relative density, it is suggested that the cyclic stress ratio corresponding to constant liquefaction impedance be taken as the critical cyclic stress ratio which implies liquefaction. There exists a linear relationship between critical cyclic stress ratio and relative density under different relative densities. Empirical formula for critical cyclic stress ratios of seabed liquefaction induced by wave loading under different relative densities is established. The possibility of seabed silt liquefaction and its influence factors are analyzed based on the small-amplitude wave theory and the data acquired in laboratory tests.
基金sponsored by the National Special Project for Marine Public Welfare Industry(No.201005005)the National Natural Science Foundation of China(Nos.42107207,41876066)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2020QD067)the Post-doctoral Innovation Project of Shandong Province(No.202002042)。
文摘The in situ pore pressure response of silt under wave action is a complex process.However,this process has not been well studied because of limited field observation techniques.The dynamic response process is closely related to engineering geological hazards;thus,this process must be urgently explored.A long-term in situ observational study of the silt sediment pore water pressure response process under wave action was conducted in the subaqueous Yellow River Delta.The response characteristics of pore water pressure are affected by tidal level and wave height.Tidal level affects the overall trend of the pore water pressure response,while wave height influences the amplitude of the pore water pressure response.This study revealed a significant lag effect in the pore pressure response.The transient pore pressure in the seabed did not respond immediately to the wave-induced pressure stress on the seabed surface.This phenomenon may be attributed to the change in soil permeability.The maximum response depth was approximately 0.5 m with a 2 m wave height.A concept model of silt soil pore pressure response under different types of wave action was developed.The accumulation rate of the pore pressure is less than the dissipation rate;thus,the developed model highlights the oscillation pore pres-sure response mechanism.The highlighted response process is of considerable importance to transient liquefaction and the startup process of pore pressure response.