A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell...A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force.展开更多
The study considers a homogeneous isotropic thermo-visco-elastic solid with hyperbolic two-temperature to cope up with its two-dimensional(2 D)deformations.The heat conduction equation is influenced by the Thomson coe...The study considers a homogeneous isotropic thermo-visco-elastic solid with hyperbolic two-temperature to cope up with its two-dimensional(2 D)deformations.The heat conduction equation is influenced by the Thomson coefficient.Lord-Shulman’s theory is used to modify the basic governing equations.A method called"normal mode analysis"is utilized to attain the magnetic field,stress,conductive and thermodynamic temperature,and displacement components.Also,a number of numerical calculations are performed and discussed to understand the impact of hyperbolic two-temperatures,Thomson parameter,and viscosity on the material mentioned above.展开更多
A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and...A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust). The reductive perturbation method has been used in derivation of the modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves. The MG equation admits solitary waves (SWs) and DLs solutions for σ around its critical value σ c (where σc is the value of σ corresponding to the vanishing of the nonlinear coefficient of the Korteweg de-Vries (K-dV) equation). The nonplanar SWs and DLs solutions are numerically analyzed and the parametric regimes for the existence of the positive as well as negative SWs and negative DLs are obtained. The basic features of nonplanar DIA SWs and DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, are discussed.展开更多
A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate ...A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.展开更多
The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The ...The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace trans- formation, the fundamental equations are expressed in the form of a vector-matrix differ- ential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the ther- mal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion tech- niques. The numerical values of the physical quantity are computed for the copper like ma- terial. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.展开更多
In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniq...In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.展开更多
The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized thermoelastic solid half-space in context of Green and Naghdi theory of type II (without energy dissipatio...The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized thermoelastic solid half-space in context of Green and Naghdi theory of type II (without energy dissipation). The governing equations in x – z plane are solved to show the existence of three coupled plane waves. The reflection of plane waves from a thermally insulated free surface is considered to obtain the relations between the reflection coefficients. A particular example of the half-space is chosen for numerical computations of the speeds and reflection coefficients of plane waves. Effects of two-temperature and rotation parameters on the speeds and the reflection coefficients of plane waves are shown graphically.展开更多
In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-tempera...In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-temperature generalized thermoelastic medium without energy dissipation are solved for surface wave solutions. The appropriate particular solutions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The non-dimensional speed is computed numerically and shown graphically to show the dependence on the frequency and two-temperature parameter.展开更多
This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed f...This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed form solutions for the two types of temperature, strain, and the stress distribution due to time exponentially decaying laser pulse are constructed. The Laplace transformation method is employed when deriving the governing equations. The inversion of Laplace transform will be obtained numerically by using the Riemann-sum approximation method. The results have been presented in figures to show the effect of the time exponentially decaying laser pulse and the two temperature parameter on all the studied fields.展开更多
Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maint...Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.展开更多
A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using g...A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using genetic algorithm multi-objective optimization method,taking the COP,exergy loss and total economic cost as the objective functions to find the best design conditions of the two systems.The Pareto fronts are obtained at different ambient temperatures.Technique for order preference by similarity to an ideal solution decision-making method is adopted to determine the optimum state points.The simulation results show that when operating at different ambient temperatures,the introduction of economizer can improve COP,reduce exergy loss and the overall economic cost rate of the two-temperature CO_(2) refrigeration system.In addition,economic analyses take the impact of carbon dioxide emission cost and electricity price into consideration.The results indicate that with the increase of CO_(2) emission cost and electricity price,the hourly economic cost of both systems increases,but the hourly economic cost of the two-temperature CO_(2) refrigeration system with economizer system is always lower than that of conventional two-temperature CO_(2) refrigeration system.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal h...The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source.The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation.The medium is a homogeneous isotropic thermoelastic in the half-space.The exact expressions of the considered variables are obtained by using normal mode analysis.Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as well as the two-temperature parameter.A comparison is also made in the two theories for different values of an internal heat source.展开更多
The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calcula...The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calculated. It is found that the calculated temperature fits the first temperature observed in the experiment by Malka et al. A model to evaluate the electron temperature by taking the electron-ion scattering into account is proposed. It is found that when I ≥ 4.0 × 101s W/cm2 the electron temperature by considering the scattering, T hs, is evidently larger than the electron temperature without considering the scattering, Th. This result is in favor of explaining the two-temperature distribution of the electron energy observed in the experiment by Malka et al.展开更多
In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance betw...In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.展开更多
The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study ...The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study the nonequilibrium carrier density,carrier and lattice temperatures,and optical properties of the crystal.The properties of the surface plasmon wave when excited are also studied.The influences of non-radiation and radiative recombination process on the photoexcitation of the semiconductor during pulse and the relaxation after the pulse are described in detail.The results show that the effects of Auger recombination on the nonequilibrium carrier density and optical properties of the crystal and the properties of the surface plasmon polariton are great,whereas the effect of radiative recombination is extremely small.展开更多
Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the de...Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.展开更多
In order to investigate the relationship between the flow-field parameters outside the vehicle and the altitude,this paper takes the Atmospheric Reentry Demonstrator(ARD)with an angle of attack of-20°as the resea...In order to investigate the relationship between the flow-field parameters outside the vehicle and the altitude,this paper takes the Atmospheric Reentry Demonstrator(ARD)with an angle of attack of-20°as the research object and adopts a two-temperature model coupled with the shear-stress transport k-ωturbulence model to focus on the variation of flow-field parameters including flow-field pressure,Mach number and temperature with the reentry altitude.It is found that the flow-field high-pressure region and low-Mach region both appear in the shock layer near the head of the ARD,while the maximum pressure of the surface appears on the windward side of the ARD's head with a toroidal distribution,and the numerical magnitude is inversely proportional to the radius of the torus.With fluid through the shoulder of the ARD flow expansion plays a dominant role,the airflow velocity increases,the Mach number of the windward side of the rear cone increases and the flow-field pressure and surface pressure rapidly decrease.When the fluid passes through the shock layer,the translational-rotation temperature will increase before the vibration-electron temperature,there is a thermal non-equilibrium effect and the two temperatures will rapidly decrease again when approaching the surface of the ARD due to the existence of temperature gradient.At the same time,both the windward side of the shoulder and the back cover of the ARD suffer from a large thermal load and require thermal protection.展开更多
This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm2 based on the two-temperature equation, and obtains the evolution of the free el...This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm2 based on the two-temperature equation, and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range, for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0, 100 nm and 500 nm, it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that, in the intense femtosecond laser ablation of aluminum, the material ablation is mainly induced by the thermal conduction of free electrons, instead of the direct absorption of the laser energy; in addition, the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.展开更多
Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation s...Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.展开更多
基金National Natural Science Foundation of China (No. 51605384)the Natural Science Foundation of Gansu Province,China (No. 21JR7RA308)。
文摘A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force.
基金the Taif University Researchers Supporting Project in Taif University of Saudi Arabia(No.TURSP-2020/230)。
文摘The study considers a homogeneous isotropic thermo-visco-elastic solid with hyperbolic two-temperature to cope up with its two-dimensional(2 D)deformations.The heat conduction equation is influenced by the Thomson coefficient.Lord-Shulman’s theory is used to modify the basic governing equations.A method called"normal mode analysis"is utilized to attain the magnetic field,stress,conductive and thermodynamic temperature,and displacement components.Also,a number of numerical calculations are performed and discussed to understand the impact of hyperbolic two-temperatures,Thomson parameter,and viscosity on the material mentioned above.
文摘A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust). The reductive perturbation method has been used in derivation of the modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves. The MG equation admits solitary waves (SWs) and DLs solutions for σ around its critical value σ c (where σc is the value of σ corresponding to the vanishing of the nonlinear coefficient of the Korteweg de-Vries (K-dV) equation). The nonplanar SWs and DLs solutions are numerically analyzed and the parametric regimes for the existence of the positive as well as negative SWs and negative DLs are obtained. The basic features of nonplanar DIA SWs and DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, are discussed.
基金support from National Natural Science Foundation of China(No.51875372)the Key R&D Program of Advanced Technology of Sichuan Science and Technology Department(No.2020YFG0111)。
文摘A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.
文摘The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace trans- formation, the fundamental equations are expressed in the form of a vector-matrix differ- ential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the ther- mal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion tech- niques. The numerical values of the physical quantity are computed for the copper like ma- terial. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.
文摘In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.
文摘The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized thermoelastic solid half-space in context of Green and Naghdi theory of type II (without energy dissipation). The governing equations in x – z plane are solved to show the existence of three coupled plane waves. The reflection of plane waves from a thermally insulated free surface is considered to obtain the relations between the reflection coefficients. A particular example of the half-space is chosen for numerical computations of the speeds and reflection coefficients of plane waves. Effects of two-temperature and rotation parameters on the speeds and the reflection coefficients of plane waves are shown graphically.
文摘In this paper, Rayleigh surface wave is studied at a stress free thermally insulated surface of a two-temperature thermoelastic solid half-space in absence of energy dissipation. The governing equations of two-temperature generalized thermoelastic medium without energy dissipation are solved for surface wave solutions. The appropriate particular solutions are applied to the required boundary conditions to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The non-dimensional speed is computed numerically and shown graphically to show the dependence on the frequency and two-temperature parameter.
文摘This work is dealing with two-temperature generalized thermoelasticity without energy dissipation infinite medium with spherical cavity when the surface of this cavity is subjected to laser heating pulse. The closed form solutions for the two types of temperature, strain, and the stress distribution due to time exponentially decaying laser pulse are constructed. The Laplace transformation method is employed when deriving the governing equations. The inversion of Laplace transform will be obtained numerically by using the Riemann-sum approximation method. The results have been presented in figures to show the effect of the time exponentially decaying laser pulse and the two temperature parameter on all the studied fields.
文摘Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.
基金supported by the National Natural Science Foundation of China (Grant No. 51776110)。
文摘A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using genetic algorithm multi-objective optimization method,taking the COP,exergy loss and total economic cost as the objective functions to find the best design conditions of the two systems.The Pareto fronts are obtained at different ambient temperatures.Technique for order preference by similarity to an ideal solution decision-making method is adopted to determine the optimum state points.The simulation results show that when operating at different ambient temperatures,the introduction of economizer can improve COP,reduce exergy loss and the overall economic cost rate of the two-temperature CO_(2) refrigeration system.In addition,economic analyses take the impact of carbon dioxide emission cost and electricity price into consideration.The results indicate that with the increase of CO_(2) emission cost and electricity price,the hourly economic cost of both systems increases,but the hourly economic cost of the two-temperature CO_(2) refrigeration system with economizer system is always lower than that of conventional two-temperature CO_(2) refrigeration system.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
文摘The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source.The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation.The medium is a homogeneous isotropic thermoelastic in the half-space.The exact expressions of the considered variables are obtained by using normal mode analysis.Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as well as the two-temperature parameter.A comparison is also made in the two theories for different values of an internal heat source.
文摘The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calculated. It is found that the calculated temperature fits the first temperature observed in the experiment by Malka et al. A model to evaluate the electron temperature by taking the electron-ion scattering into account is proposed. It is found that when I ≥ 4.0 × 101s W/cm2 the electron temperature by considering the scattering, T hs, is evidently larger than the electron temperature without considering the scattering, Th. This result is in favor of explaining the two-temperature distribution of the electron energy observed in the experiment by Malka et al.
文摘In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11804227).
文摘The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study the nonequilibrium carrier density,carrier and lattice temperatures,and optical properties of the crystal.The properties of the surface plasmon wave when excited are also studied.The influences of non-radiation and radiative recombination process on the photoexcitation of the semiconductor during pulse and the relaxation after the pulse are described in detail.The results show that the effects of Auger recombination on the nonequilibrium carrier density and optical properties of the crystal and the properties of the surface plasmon polariton are great,whereas the effect of radiative recombination is extremely small.
基金Projects(862016(Bio Combs4Nanofibres)HELLAS-CH+1 种基金MIS 5002735) funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” and co-financed by Greece and the EU (European Regional Development Fund)Project (COST Action TUMIEE) supported by COST-European Cooperation in Science and Technology。
文摘Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175177)the China Postdoctoral Science Foundation(Grant No.2021M693889)。
文摘In order to investigate the relationship between the flow-field parameters outside the vehicle and the altitude,this paper takes the Atmospheric Reentry Demonstrator(ARD)with an angle of attack of-20°as the research object and adopts a two-temperature model coupled with the shear-stress transport k-ωturbulence model to focus on the variation of flow-field parameters including flow-field pressure,Mach number and temperature with the reentry altitude.It is found that the flow-field high-pressure region and low-Mach region both appear in the shock layer near the head of the ARD,while the maximum pressure of the surface appears on the windward side of the ARD's head with a toroidal distribution,and the numerical magnitude is inversely proportional to the radius of the torus.With fluid through the shoulder of the ARD flow expansion plays a dominant role,the airflow velocity increases,the Mach number of the windward side of the rear cone increases and the flow-field pressure and surface pressure rapidly decrease.When the fluid passes through the shock layer,the translational-rotation temperature will increase before the vibration-electron temperature,there is a thermal non-equilibrium effect and the two temperatures will rapidly decrease again when approaching the surface of the ARD due to the existence of temperature gradient.At the same time,both the windward side of the shoulder and the back cover of the ARD suffer from a large thermal load and require thermal protection.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10904079 and 60838001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090031120041)the Natural Science Foundation of Tianjin (Grant No. 10JCYBJC01300)
文摘This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm2 based on the two-temperature equation, and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range, for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0, 100 nm and 500 nm, it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that, in the intense femtosecond laser ablation of aluminum, the material ablation is mainly induced by the thermal conduction of free electrons, instead of the direct absorption of the laser energy; in addition, the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.
基金supported by the National Natural Science Foundation of China (Grant No. 60978014)the Natural Science Foundation of Jilin Province (Grant No. 20090523)the Educational Commission of Jilin Province (Grant No. [2008]297)
文摘Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.