The title complex [Zn(-O2CCH=CHCO2)(C3H4N2)(H2O)]n was prepared by the reaction of zinc carbonate with maleic acid and imidazole in an aqueous-alcohol solution at 333 K, and its crystal structure has been solved by si...The title complex [Zn(-O2CCH=CHCO2)(C3H4N2)(H2O)]n was prepared by the reaction of zinc carbonate with maleic acid and imidazole in an aqueous-alcohol solution at 333 K, and its crystal structure has been solved by single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group Pc with a = 5.3858(7), b = 22.685(3), c = 7.6782(1) ? = 92.261(2)o, V = 937.4(2) 3, Z = 1, C14H16N4O10Zn2, Mr = 531.05, Dc = 1.882 g/cm3, = 2.623 mm1, F(000) = 532, the final R = 0.0372 and wR = 0.0930 for 1926 observed reflections with I>2s(I). The central zinc atom is five-coordinated in a distorted square pyramidal environment to three oxygen atoms of two different maleate ligands, a nitrogen atom of the imi- dazole ligand and an oxygen atom of water. In the complex two carboxylate groups of the maleate ligands have two coordination modes. One acts as a bidentate chelate ligand and the other a monoatomic monodentate ligand to bridge two zinc centers. As a result, 1-D infinite polymeric chains are formed, which are linked together by pairs of OH…O hydrogen bonds between the coordination water OH groups and carboxylate oxygen atoms to construct a 2-D layered polymer, and the layer structure is stabilized by p-p stacking of the imidozel ligands.展开更多
A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(exce...A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(except that with substituent of methoxy) and the clearing temperature T;of the polymers change regularly with varying of the length of the alkyl substituent groups.展开更多
Two series of new liquid crystalline polymers with T-shaped two-dimensional mesogenic units were synthesized by low temperature solution polycondensations of 4-substituted N-2, 5-dihydroxybenzylidene aniline monomers ...Two series of new liquid crystalline polymers with T-shaped two-dimensional mesogenic units were synthesized by low temperature solution polycondensations of 4-substituted N-2, 5-dihydroxybenzylidene aniline monomers with different diacyl dichlorides. The polymers were found to be nematic and shown liquid crystalline behavior. The melting temperature T-m and the clearing temperature T-i of the polymers change regularly with varying of the monomer structures.展开更多
The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of th...The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.展开更多
Two new cadmium(II) and zinc(II) coordination polymers, {[Cd(btre)0.5- (mip)(H2O)2]·H2O}n (1) and [Zn(btre)(mip)]n (2), were synthesized at room temperature condition and characterized by IR spe...Two new cadmium(II) and zinc(II) coordination polymers, {[Cd(btre)0.5- (mip)(H2O)2]·H2O}n (1) and [Zn(btre)(mip)]n (2), were synthesized at room temperature condition and characterized by IR spectra, elemental analyses, single-crystal and powder X-ray diffractions (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane, H2mip = 5-methyl-1,3-benzenedicarboxylic acid). Complex 1 belongs to the triclinic system, P space group, with a = 8.9830(6), b = 10.0579(6), c = 10.2479(9) , α = 98.837(6), β = 115.975(8), γ = 106.370(6)°, V = 756.30(11) 3 and Z = 2; complex 2 crystallizes in monoclinic, space group P21/c, with a = 7.0332(3), b = 14.9947(7), c = 15.9689(7) ?, β = 97.1170(10)°, V = 1671.12(13) ?3 and Z = 4. Compounds 1 and 2 based on the same N/O-donor ligands show different structures. The one-dimensional chains of 1 are further linked by hydrogen bonding and π-π interactions to yield a three-dimensional supramolecular structure. The two-dimensional (6,3) networks of 2 are further extended into a 3D framework via π-π interactions. Thermal stabilities and luminescence of 1 and 2 were investigated.展开更多
In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting m...In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs.展开更多
A new coordination polymer [Cd(bimc)2]n was obtained by the reaction of Hbimc with Cd(NO3) 2·4H2O in NaOH solution, and characterized by elemental analysis, IR and singlecrystal X-ray diffraction. The crystal...A new coordination polymer [Cd(bimc)2]n was obtained by the reaction of Hbimc with Cd(NO3) 2·4H2O in NaOH solution, and characterized by elemental analysis, IR and singlecrystal X-ray diffraction. The crystal belongs to orthorhombic, space group Pbcn with a = 12.533(4), b = 15.705(5), c = 15.200(5) A, V= 2991.8(15) A^3, Mr = 434.68, Z = 8, Dc = 1.930 g/cm^3, F(000) = 1712,μ(MoKa) = 1.492 mm^-1, the final R = 0.0410 and wR = 0.0804 for 1661 observed reflections (I 〉 2σ(I)). The Cd atom exhibits a distorted six-coordinate CdNzOa octahedral coordination geometry. The complex molecules are linked by both μ2-(η2-O, O^-), NI and μ2-(η2-O, O^-), N3 coordination modes of ligands to form cross-like wave (4, 4) layer structures which are further stacked through interlayer hydrogen bonds and π-π stacking interactions in an offset fashion to form a 3D supramolecular structure.展开更多
A new Gd coordination polymer based on 2-(pyridin-3-yl)-lH-imidazole-4,5-dicar- boxylate, formulated as {[Gd2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (1, bpy = 4,4'-bipyridine) has been synthes...A new Gd coordination polymer based on 2-(pyridin-3-yl)-lH-imidazole-4,5-dicar- boxylate, formulated as {[Gd2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (1, bpy = 4,4'-bipyridine) has been synthesized under hydrothermal conditions. The compound crystallizes in triclinic, space group Pi with a = 11.451(2), b = 11.596(2), c = 15.7333(3) A, β = 79.47(3)°, Z = 2, V= 1948.6(7) A^3, C30H34Gd2N10O22, Dc = 2.047 g/cm^3, Mr= 1201.17, 2(MoKa) = 0.71073 A,μ = 3.477 mml, F(000) = 1176, the final R = 0.0554 and wR = 0.1181. Polymer 1 is a 2D network built up from 4-connected HPylDC2- anion and 4-connected Gd ions. Dielectric constant of complex 1 was measured at different frequencies with temperature variation.展开更多
A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- ...A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- (phen)(μ-L)3/3]?H2O (H2L = pyrazine-2,3-dicarboxylic acid) has been hydrothermally synthesized, and X-ray single-crystal diffraction analysis shows that it crystallizes in the monoclinic system, space group P21/n with a = 11.480(2), b = 11.885(2), c = 12.939(3) ?, β = 110.55(3)°, V = 1653.1(6) ?3, Mr = 423.25, Dc = 0.425 g/cm3, Z = 4, R = 0.0361 and wR = 0.1011. The title complex consists of 2D 2 ∞ [Co(phen)(μ-L)3/3] layers and crystal water molecules. Each Co atom is octahedrally coordinated by three N atoms and three O atoms to form 2D 2 ∞ [Co(phen)(μ-L)3/3] polymeric layers. Furthermore, such 2D layers are stacked into 3D supramolecular frameworks via Van der Waals’ intermolecular forces, strong and weak hydrogen-bond interactions. The coordination phen and crystal water molecules are resided into cavities of the frameworks.展开更多
Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have ...Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.展开更多
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a...Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.展开更多
Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and ...Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and Fe_(3)GeTe_(2) opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_(3)GeTe_(2).We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_(3)GeTe_(2).Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems.展开更多
The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional the...The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.展开更多
Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostruct...Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect.展开更多
A new compound, {[Sm^2L3(H2O)4]·(4,4'-bpy)·3H2O}n(1, H2 L = 5-(3-pyridyl methoxy) isophthalic acid, 4,4'-bpy = 4,4A-dipyridyl), has been hydrothermally synthesized and characterized by single-cryst...A new compound, {[Sm^2L3(H2O)4]·(4,4'-bpy)·3H2O}n(1, H2 L = 5-(3-pyridyl methoxy) isophthalic acid, 4,4'-bpy = 4,4A-dipyridyl), has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in triclinic, space group P1 with a = 11.266(2), b = 15.530(3), c = 16.711(3) A, α = 112.803(3), β = 90.526(1), γ = 94.006(3)°, V = 2686.6(9) A3, Z = 2, Dc = 1.727 g/cm^3, μ = 2.251 mm-1, F(000) = 1392, S = 0.999, the final R = 0.0296 and wR = 0.1058. In the title compound, two crystallographically independent Sm^3+ cations are bridged by the carboxyl group of L2- ligands to form two different {Sm^2} binuclear subunits which are further connected by two distinct L2- ligands to shape a 1D chain, and such 1D chains are linked up to generate a 2D coordination polymer by another crystallographically unique L2- ligand. The thermogravimetric analysis and luminescent property of the title compound were also investigated.展开更多
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction be...A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
The incorporation of commercial flame retardants into fiber-reinforced polymer(FRP)composites has been proposed as a potential solution to improve the latter’s poor flame resistance.However,this approach often poses ...The incorporation of commercial flame retardants into fiber-reinforced polymer(FRP)composites has been proposed as a potential solution to improve the latter’s poor flame resistance.However,this approach often poses a challenge,as it can adversely affect the mechanical properties of the FRP.Thus,balancing the need for improved flame resistance with the preservation of mechanical integrity remains a complex issue in FRP research.Addressing this critical concern,this study introduces a novel additive system featuring a combination of one-dimensional(1D)hollow tubular structured halloysite nanotubes(HNTs)and two-dimensional(2D)polygonal flake-shaped nano kaolinite(NKN).By employing a 1D/2D hybrid kaolinite nanoclay system,this research aims to simultaneously improve the flame retardancy and mechanical properties.This innovative approach offers several advantages.During combustion and pyrolysis processes,the 1D/2D hybrid kaolinite nanoclay system proves effective in reducing heat release and volatile leaching.Furthermore,the system facilitates the formation of reinforcing skeletons through a crosslinking mechanism during pyrolysis,resulting in the development of a compact char layer.This char layer acts as a protective barrier,enhancing the material’s resistance to heat and flames.In terms of mechanical properties,the multilayered polygonal flake-shaped 2D NKN plays a crucial role by impeding the formation of cracks that typically arise from vulnerable areas,such as adhesive phase particles.Simultaneously,the 1D HNT bridges these cracks within the matrix,ensuring the structural integrity of the composite material.In an optimal scenario,the homogeneously distributed 1D/2D hybrid kaolinite nanoclays exhibit remarkable results,with a 51.0%improvement in mode II fracture toughness(GIIC),indicating increased resistance to crack propagation.In addition,there is a 34.5%reduction in total heat release,signifying improved flame retardancy.This study represents a significant step forward in the field of composite materials.The innovative use of hybrid low-dimensional nanomaterials offers a promising avenue for the development of multifunctional composites.By carefully designing and incorporating these nanoclays,researchers can potentially create a new generation of FRP composites that excel in both flame resistance and mechanical strength.展开更多
Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight la...Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29872037) and the Natural Science Foundation of Fujian province (No. C0120002)
文摘The title complex [Zn(-O2CCH=CHCO2)(C3H4N2)(H2O)]n was prepared by the reaction of zinc carbonate with maleic acid and imidazole in an aqueous-alcohol solution at 333 K, and its crystal structure has been solved by single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group Pc with a = 5.3858(7), b = 22.685(3), c = 7.6782(1) ? = 92.261(2)o, V = 937.4(2) 3, Z = 1, C14H16N4O10Zn2, Mr = 531.05, Dc = 1.882 g/cm3, = 2.623 mm1, F(000) = 532, the final R = 0.0372 and wR = 0.0930 for 1926 observed reflections with I>2s(I). The central zinc atom is five-coordinated in a distorted square pyramidal environment to three oxygen atoms of two different maleate ligands, a nitrogen atom of the imi- dazole ligand and an oxygen atom of water. In the complex two carboxylate groups of the maleate ligands have two coordination modes. One acts as a bidentate chelate ligand and the other a monoatomic monodentate ligand to bridge two zinc centers. As a result, 1-D infinite polymeric chains are formed, which are linked together by pairs of OH…O hydrogen bonds between the coordination water OH groups and carboxylate oxygen atoms to construct a 2-D layered polymer, and the layer structure is stabilized by p-p stacking of the imidozel ligands.
基金This work was supported by the FEYUT, SEDC, CHINA and by the National Natural Science Foundation of China.
文摘A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(except that with substituent of methoxy) and the clearing temperature T;of the polymers change regularly with varying of the length of the alkyl substituent groups.
基金Tins work was supported by the National Natural Science Foundation of China.
文摘Two series of new liquid crystalline polymers with T-shaped two-dimensional mesogenic units were synthesized by low temperature solution polycondensations of 4-substituted N-2, 5-dihydroxybenzylidene aniline monomers with different diacyl dichlorides. The polymers were found to be nematic and shown liquid crystalline behavior. The melting temperature T-m and the clearing temperature T-i of the polymers change regularly with varying of the monomer structures.
文摘The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.
基金Supported by the Natural Science Foundation of Anhui Province(KJ2016A512)Key projects of Anhui Province University Outstanding Youth Talent Support Program(gxyqZD2016372)
文摘Two new cadmium(II) and zinc(II) coordination polymers, {[Cd(btre)0.5- (mip)(H2O)2]·H2O}n (1) and [Zn(btre)(mip)]n (2), were synthesized at room temperature condition and characterized by IR spectra, elemental analyses, single-crystal and powder X-ray diffractions (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane, H2mip = 5-methyl-1,3-benzenedicarboxylic acid). Complex 1 belongs to the triclinic system, P space group, with a = 8.9830(6), b = 10.0579(6), c = 10.2479(9) , α = 98.837(6), β = 115.975(8), γ = 106.370(6)°, V = 756.30(11) 3 and Z = 2; complex 2 crystallizes in monoclinic, space group P21/c, with a = 7.0332(3), b = 14.9947(7), c = 15.9689(7) ?, β = 97.1170(10)°, V = 1671.12(13) ?3 and Z = 4. Compounds 1 and 2 based on the same N/O-donor ligands show different structures. The one-dimensional chains of 1 are further linked by hydrogen bonding and π-π interactions to yield a three-dimensional supramolecular structure. The two-dimensional (6,3) networks of 2 are further extended into a 3D framework via π-π interactions. Thermal stabilities and luminescence of 1 and 2 were investigated.
基金financially supported by the National Key Research and Development Program of China (2018YFB0406704)the National Natural Science Foundation of China (61974066, 61725502, 61634001)+3 种基金the Major Research Plan of the National Natural Science Foundation of China (91733302)the fund for Talented of Nanjing Tech University (201983)the Major Program of Natural Science Research of Jiangsu Higher Education Institutions of China (18KJA510002)the Synergetic Innovation Center for Organic Electronics and Information Displays。
文摘In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs.
基金This work was supported by the NNSFC (No. 30460153 20561001), NSF of Guangxi Province (No. 0447019), and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Chinese Ministry of Education
文摘A new coordination polymer [Cd(bimc)2]n was obtained by the reaction of Hbimc with Cd(NO3) 2·4H2O in NaOH solution, and characterized by elemental analysis, IR and singlecrystal X-ray diffraction. The crystal belongs to orthorhombic, space group Pbcn with a = 12.533(4), b = 15.705(5), c = 15.200(5) A, V= 2991.8(15) A^3, Mr = 434.68, Z = 8, Dc = 1.930 g/cm^3, F(000) = 1712,μ(MoKa) = 1.492 mm^-1, the final R = 0.0410 and wR = 0.0804 for 1661 observed reflections (I 〉 2σ(I)). The Cd atom exhibits a distorted six-coordinate CdNzOa octahedral coordination geometry. The complex molecules are linked by both μ2-(η2-O, O^-), NI and μ2-(η2-O, O^-), N3 coordination modes of ligands to form cross-like wave (4, 4) layer structures which are further stacked through interlayer hydrogen bonds and π-π stacking interactions in an offset fashion to form a 3D supramolecular structure.
基金Supported by the National Natural Science Foundation of China(No.21201087)Jiangsu Province NSF BK20131244+1 种基金the Foundation of Jiangsu Educational Committee(11KJB150004)Qing Lan Project of Jiangsu Province
文摘A new Gd coordination polymer based on 2-(pyridin-3-yl)-lH-imidazole-4,5-dicar- boxylate, formulated as {[Gd2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (1, bpy = 4,4'-bipyridine) has been synthesized under hydrothermal conditions. The compound crystallizes in triclinic, space group Pi with a = 11.451(2), b = 11.596(2), c = 15.7333(3) A, β = 79.47(3)°, Z = 2, V= 1948.6(7) A^3, C30H34Gd2N10O22, Dc = 2.047 g/cm^3, Mr= 1201.17, 2(MoKa) = 0.71073 A,μ = 3.477 mml, F(000) = 1176, the final R = 0.0554 and wR = 0.1181. Polymer 1 is a 2D network built up from 4-connected HPylDC2- anion and 4-connected Gd ions. Dielectric constant of complex 1 was measured at different frequencies with temperature variation.
基金This work was supported by the Science and Technology Bureau of Jinhua City (No 2003-01-179)
文摘A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- (phen)(μ-L)3/3]?H2O (H2L = pyrazine-2,3-dicarboxylic acid) has been hydrothermally synthesized, and X-ray single-crystal diffraction analysis shows that it crystallizes in the monoclinic system, space group P21/n with a = 11.480(2), b = 11.885(2), c = 12.939(3) ?, β = 110.55(3)°, V = 1653.1(6) ?3, Mr = 423.25, Dc = 0.425 g/cm3, Z = 4, R = 0.0361 and wR = 0.1011. The title complex consists of 2D 2 ∞ [Co(phen)(μ-L)3/3] layers and crystal water molecules. Each Co atom is octahedrally coordinated by three N atoms and three O atoms to form 2D 2 ∞ [Co(phen)(μ-L)3/3] polymeric layers. Furthermore, such 2D layers are stacked into 3D supramolecular frameworks via Van der Waals’ intermolecular forces, strong and weak hydrogen-bond interactions. The coordination phen and crystal water molecules are resided into cavities of the frameworks.
基金supported by the National Natural Science Foundation of China(52074320)Petrochina Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-03)。
文摘Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.
基金Project supported by the National Natural Scinece Foundation of China(Grant Nos.11671219,11871446,12071304,and 12071451).
文摘Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.XJS200503)the Post-Doctoral Research Project of Shaanxi Province,China。
文摘Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and Fe_(3)GeTe_(2) opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_(3)GeTe_(2).We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_(3)GeTe_(2).Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems.
基金the National Natural Science Foundation of China(Grant Nos.11674136 and 11564022)Yunnan Province for Recruiting High-Caliber Technological Talents,China(Grant No.1097816002)+3 种基金Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders,China(Grant No.2017HB010)the Academic Qinglan Project of KUST(Grant No.1407840010)the Analysis and Testing Fund of KUST(Grant No.2017M20162230010)the High-level Talents of KUST(Grant No.1411909425)。
文摘The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.
基金funding support from the Singapore MOE Ac RF 308 Tier 2(Grant No.T2EP50220-0026)funding support from Shandong Provincial Natural Science Foundation(Grant No.ZR2023QA012)+3 种基金the Special Fund-ing in the Project of Qilu Young Scholar Program of Shandong Universityfunding support from Australian Research Council Future Fellowship(Grant No.FT220100290)funding support from the AINSE postgraduate awardfunding support from the Research and Development Administration Office at the University of Macao(Grants Nos.MYRG2022-00088-IAPME and SRG2021-00003-IAPME)。
文摘Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect.
基金Supported by the National Natural Science Foundation of China(Nos.21171037&21103021)the Natural Science Foundation of Fujian Province(No.2008I0013&No.2012J0142)
文摘A new compound, {[Sm^2L3(H2O)4]·(4,4'-bpy)·3H2O}n(1, H2 L = 5-(3-pyridyl methoxy) isophthalic acid, 4,4'-bpy = 4,4A-dipyridyl), has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in triclinic, space group P1 with a = 11.266(2), b = 15.530(3), c = 16.711(3) A, α = 112.803(3), β = 90.526(1), γ = 94.006(3)°, V = 2686.6(9) A3, Z = 2, Dc = 1.727 g/cm^3, μ = 2.251 mm-1, F(000) = 1392, S = 0.999, the final R = 0.0296 and wR = 0.1058. In the title compound, two crystallographically independent Sm^3+ cations are bridged by the carboxyl group of L2- ligands to form two different {Sm^2} binuclear subunits which are further connected by two distinct L2- ligands to shape a 1D chain, and such 1D chains are linked up to generate a 2D coordination polymer by another crystallographically unique L2- ligand. The thermogravimetric analysis and luminescent property of the title compound were also investigated.
基金the National Natural Science Foundation of China(Nos.12072166 and 11862021)the Program for Science and Technology of Inner Mongolia Autonomous Region of China(No.2021GG0254)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2020MS01006)。
文摘A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
基金supported by the National Natural Science Foundation of China(11872279,12172258,and 11625210).
文摘The incorporation of commercial flame retardants into fiber-reinforced polymer(FRP)composites has been proposed as a potential solution to improve the latter’s poor flame resistance.However,this approach often poses a challenge,as it can adversely affect the mechanical properties of the FRP.Thus,balancing the need for improved flame resistance with the preservation of mechanical integrity remains a complex issue in FRP research.Addressing this critical concern,this study introduces a novel additive system featuring a combination of one-dimensional(1D)hollow tubular structured halloysite nanotubes(HNTs)and two-dimensional(2D)polygonal flake-shaped nano kaolinite(NKN).By employing a 1D/2D hybrid kaolinite nanoclay system,this research aims to simultaneously improve the flame retardancy and mechanical properties.This innovative approach offers several advantages.During combustion and pyrolysis processes,the 1D/2D hybrid kaolinite nanoclay system proves effective in reducing heat release and volatile leaching.Furthermore,the system facilitates the formation of reinforcing skeletons through a crosslinking mechanism during pyrolysis,resulting in the development of a compact char layer.This char layer acts as a protective barrier,enhancing the material’s resistance to heat and flames.In terms of mechanical properties,the multilayered polygonal flake-shaped 2D NKN plays a crucial role by impeding the formation of cracks that typically arise from vulnerable areas,such as adhesive phase particles.Simultaneously,the 1D HNT bridges these cracks within the matrix,ensuring the structural integrity of the composite material.In an optimal scenario,the homogeneously distributed 1D/2D hybrid kaolinite nanoclays exhibit remarkable results,with a 51.0%improvement in mode II fracture toughness(GIIC),indicating increased resistance to crack propagation.In addition,there is a 34.5%reduction in total heat release,signifying improved flame retardancy.This study represents a significant step forward in the field of composite materials.The innovative use of hybrid low-dimensional nanomaterials offers a promising avenue for the development of multifunctional composites.By carefully designing and incorporating these nanoclays,researchers can potentially create a new generation of FRP composites that excel in both flame resistance and mechanical strength.
基金the financial support of NSERC(Discovery Grant RGPIN-2015-03985).
文摘Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.