Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Although selective laser trabeculoplasty(SLT)is a recognized method for the treatment of glaucoma,the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear.The p...Although selective laser trabeculoplasty(SLT)is a recognized method for the treatment of glaucoma,the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear.The purpose of this review is to summarize the potential mechanisms of SLT on trabecular meshwork both in vivo and in vitro,so as to reveal the potential mechanism of SLT.SLT may induce immune or inflammatory response in trabecular meshwork(TM)induced by possible oxidative damage etc,and remodel extracellular matrix.It may also induce monocytes to aggregate in TM tissue,increase Schlemm’s canal(SC)cell conductivity,disintegrate cell junction and promote permeability through autocrine and paracrine forms.This provides a theoretical basis for SLT treatment in glaucoma.展开更多
Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the...Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the traditional RNN-based models still suffer from limitations such as 1)high-dimensional data representation in natural language processing and 2)biased attentive weights for subsequent words in traditional time series models.In this study,a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory(Bi-LSTM)and attention mechanism.The proposed model is able to generate the more effective question-answer pair representation.Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model.Specifically,we achieve a maximum improvement of 3.8%over the classical LSTM model in terms of mean average precision.展开更多
Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level ...Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level and the mechanism level of conceptual design.The principle of computer coding and storing have been built to give a fast and broad selection of mechanisms that meets the requirements of basic motion characters.Then on the basis of mentioned above,the heuristic matching propagation principle (HMPP) of kinematic behaviors and its true table serves as a guide to perform mechanism types selection.Finally an application is given to indicate its practicability and effectiveness.展开更多
New type professional farmers are farmers who possess certain resources and capitals,have certain extent of spirit of entrepreneurship,and are fully capable of obtaining and allocating resources related to agricultura...New type professional farmers are farmers who possess certain resources and capitals,have certain extent of spirit of entrepreneurship,and are fully capable of obtaining and allocating resources related to agricultural production and management,and engaged in agricultural production and management for obtaining average profit.Cultivation of new type professional farmers should be promoted in the process and at the background of"coordinated development of industrialization,informationization,urbanization and agricultural modernization".It should establish a proper cultivation subject system consisting of government,enterprises,rural communities and nonprofit organizations.Relying on multiple motive forces,efforts should be concentrated on cultivating those farmers with enterprising,highly innovative and learning ability,to guide traditional farmers to change into learning,enterprising and innovative ones.In addition,cultivation of new type professional farmers must rely on farmer education and training,modern agricultural development,increase in agricultural comparative advantage,innovation of rural management system and mechanism,multiple types of agricultural operation on a fairly large scale,as well as construction and regulation of new rural communities.Finally,it is recommended to provide system guarantee from long-term input mechanism of new type professional farmer education and training,incentive and restrictive mechanism of new type professional farmer cultivation,and construction of favorable environment for agricultural entrepreneurship.展开更多
Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classifi...Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM.展开更多
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa...Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.展开更多
A new Al−4.87Mn−1.42Mg−0.63Sc−0.20Zr(wt.%)alloy was fabricated by selective laser melting(SLM)and its microstructure and mechanical properties before and after aging were investigated.The results show that at a laser ...A new Al−4.87Mn−1.42Mg−0.63Sc−0.20Zr(wt.%)alloy was fabricated by selective laser melting(SLM)and its microstructure and mechanical properties before and after aging were investigated.The results show that at a laser power input of 300 W,increasing laser scanning speeds from 700 to 1500 mm/s improves the mechanical properties.In the meantime,the lattice distortion values increase from 0.15%to 0.31%,showing an increasing solute supersaturation.At a laser scanning speed of 1500 mm/s,the yield strength,ultimate tensile strength and elongation of the as-SLM alloys are 356 MPa,412 MPa and 17.7%,respectively.After aging at 350°C for 8 h,these values increase to 527 MPa,554 MPa and 10.4%,respectively.The contributions to the yield strength increments from the secondary Al6(Fe,Mn)needle-like phase and re-precipitated L12 structured Al6(Sc,Zr,Ti)nano-particles during aging are 74 and 79 MPa,respectively.As the aging temperature increases to 450°C,the dominant precipitation strengthening is attributed to the secondary Al6(Sc,Zr,Ti)nano-particles.展开更多
The security problems of wireless sensor networks (WSN) have attracted people’s wide attention. In this paper, after we have summarized the existing security problems and solutions in WSN, we find that the insider at...The security problems of wireless sensor networks (WSN) have attracted people’s wide attention. In this paper, after we have summarized the existing security problems and solutions in WSN, we find that the insider attack to WSN is hard to solve. Insider attack is different from outsider attack, because it can’t be solved by the traditional encryption and message authentication. Therefore, a reliable secure routing protocol should be proposed in order to defense the insider attack. In this paper, we focus on insider selective forwarding attack. The existing detection mechanisms, such as watchdog, multipath retreat, neighbor-based monitoring and so on, have both advantages and disadvantages. According to their characteristics, we proposed a secure routing protocol based on monitor node and trust mechanism. The reputation value is made up with packet forwarding rate and node’s residual energy. So this detection and routing mechanism is universal because it can take account of both the safety and lifetime of network. Finally, we use OPNET simulation to verify the performance of our algorithm.展开更多
The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demon...The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.展开更多
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A...The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.展开更多
A type of polymer-coated molybdenum powder used in selective laser sintering technology was prepared by coating polymer on molybdenum particles and frozen grinding techniques, with the maximum particle diameter of 71 ...A type of polymer-coated molybdenum powder used in selective laser sintering technology was prepared by coating polymer on molybdenum particles and frozen grinding techniques, with the maximum particle diameter of 71 μm. The laser sintering experiments of polymer-coated molybdenum powder were conducted by using the self-developed selective laser sintering machine (HLRP-350I). The method of microscopic analysis was used to investigate the dynamic laser sintering process of polymer-coated molybdenum powder. Based on the study, the laser sintering mechanisms of polymer-coated molybdenum powder were presented. It is found that the mechanism is viscous flow when the laser sintering temperature is between 100 ℃ and 160 ℃, which can be described by a two-sphere model; and the mechanism is melting /solidification when the temperature is above 160 ℃.展开更多
XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain ...XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.展开更多
Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relat...Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.展开更多
By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Th...By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Then choosing the one as mechanical actuators, the workspace of the 4-PPPS parallel mechanism is deduced according to the rational input scheme. Finally the rationality of input scheme for this mechanism is identified on the basis of the continuity of the workspace.展开更多
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL...To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation.展开更多
In order to improve the reliability of the mechanical movement of the rotary electronic dobby, the kinematics analysis of the heald selection mechanism is carried out and the simulation is carried out with Matlab. Fir...In order to improve the reliability of the mechanical movement of the rotary electronic dobby, the kinematics analysis of the heald selection mechanism is carried out and the simulation is carried out with Matlab. Firstly, the operation mechanism of the heald selection mechanism is analyzed in detail. The conjugate cam is mapped. The cam profile curve is fitted with cubic spline interpolation. Secondly, based on the overall analysis method and the complex vector method, the kinematics analysis of the key components after the high pair low generation is performed, and the angular displacement and angular velocity of each component are calculated with the rotation of the active cam. Finally, the movement curve diagram is drawn with Matlab, which lays the foundation for the dynamic analysis and in-depth study of the selection mechanism in the future.展开更多
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘Although selective laser trabeculoplasty(SLT)is a recognized method for the treatment of glaucoma,the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear.The purpose of this review is to summarize the potential mechanisms of SLT on trabecular meshwork both in vivo and in vitro,so as to reveal the potential mechanism of SLT.SLT may induce immune or inflammatory response in trabecular meshwork(TM)induced by possible oxidative damage etc,and remodel extracellular matrix.It may also induce monocytes to aggregate in TM tissue,increase Schlemm’s canal(SC)cell conductivity,disintegrate cell junction and promote permeability through autocrine and paracrine forms.This provides a theoretical basis for SLT treatment in glaucoma.
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61572326,and Grant 61802258the Natural Science Foundation of Shanghai under Grant 18ZR1428300the Shanghai Committee of Science and Technology under Grant 17070502800 and Grant 16JC1403000.
文摘Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the traditional RNN-based models still suffer from limitations such as 1)high-dimensional data representation in natural language processing and 2)biased attentive weights for subsequent words in traditional time series models.In this study,a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory(Bi-LSTM)and attention mechanism.The proposed model is able to generate the more effective question-answer pair representation.Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model.Specifically,we achieve a maximum improvement of 3.8%over the classical LSTM model in terms of mean average precision.
基金Sponsored by the Chinese National Foundation of Science Na 59875058.
文摘Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level and the mechanism level of conceptual design.The principle of computer coding and storing have been built to give a fast and broad selection of mechanisms that meets the requirements of basic motion characters.Then on the basis of mentioned above,the heuristic matching propagation principle (HMPP) of kinematic behaviors and its true table serves as a guide to perform mechanism types selection.Finally an application is given to indicate its practicability and effectiveness.
基金Supported by Key Project of National Social Science Foundation(10AGL007&12ASH004)Key Project of Ministry of Education(DFA100209)+2 种基金Ph.D.Foundation Project of Southwest University(SWU1209338)Fundamental Research Funds for the Central Universities in 2013(SWU1309315)Fundamental Research Funds for the Central Universities in 2009(SWU0909629)
文摘New type professional farmers are farmers who possess certain resources and capitals,have certain extent of spirit of entrepreneurship,and are fully capable of obtaining and allocating resources related to agricultural production and management,and engaged in agricultural production and management for obtaining average profit.Cultivation of new type professional farmers should be promoted in the process and at the background of"coordinated development of industrialization,informationization,urbanization and agricultural modernization".It should establish a proper cultivation subject system consisting of government,enterprises,rural communities and nonprofit organizations.Relying on multiple motive forces,efforts should be concentrated on cultivating those farmers with enterprising,highly innovative and learning ability,to guide traditional farmers to change into learning,enterprising and innovative ones.In addition,cultivation of new type professional farmers must rely on farmer education and training,modern agricultural development,increase in agricultural comparative advantage,innovation of rural management system and mechanism,multiple types of agricultural operation on a fairly large scale,as well as construction and regulation of new rural communities.Finally,it is recommended to provide system guarantee from long-term input mechanism of new type professional farmer education and training,incentive and restrictive mechanism of new type professional farmer cultivation,and construction of favorable environment for agricultural entrepreneurship.
基金Supported by National Natural Science Foundation of China(Grant No.51605077)Science Challenge Project(Grant No.CKY2016212A506-0101)Science Fund for Creative Research Groups of NSFC(Grant No.51621064)
文摘Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM.
基金supported by the National Key Research and Development Program(2019YFC1606704)the Key Research and Development Program of Shaanxi Province(2022NY-013)+1 种基金National Natural Science Foundation of China(31801653)the Natural Science Foundation of Shaanxi Province(2019JQ-722).
文摘Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.
基金supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671)+1 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)the National Natural Science Foundation of China(No.51601229).
文摘A new Al−4.87Mn−1.42Mg−0.63Sc−0.20Zr(wt.%)alloy was fabricated by selective laser melting(SLM)and its microstructure and mechanical properties before and after aging were investigated.The results show that at a laser power input of 300 W,increasing laser scanning speeds from 700 to 1500 mm/s improves the mechanical properties.In the meantime,the lattice distortion values increase from 0.15%to 0.31%,showing an increasing solute supersaturation.At a laser scanning speed of 1500 mm/s,the yield strength,ultimate tensile strength and elongation of the as-SLM alloys are 356 MPa,412 MPa and 17.7%,respectively.After aging at 350°C for 8 h,these values increase to 527 MPa,554 MPa and 10.4%,respectively.The contributions to the yield strength increments from the secondary Al6(Fe,Mn)needle-like phase and re-precipitated L12 structured Al6(Sc,Zr,Ti)nano-particles during aging are 74 and 79 MPa,respectively.As the aging temperature increases to 450°C,the dominant precipitation strengthening is attributed to the secondary Al6(Sc,Zr,Ti)nano-particles.
文摘The security problems of wireless sensor networks (WSN) have attracted people’s wide attention. In this paper, after we have summarized the existing security problems and solutions in WSN, we find that the insider attack to WSN is hard to solve. Insider attack is different from outsider attack, because it can’t be solved by the traditional encryption and message authentication. Therefore, a reliable secure routing protocol should be proposed in order to defense the insider attack. In this paper, we focus on insider selective forwarding attack. The existing detection mechanisms, such as watchdog, multipath retreat, neighbor-based monitoring and so on, have both advantages and disadvantages. According to their characteristics, we proposed a secure routing protocol based on monitor node and trust mechanism. The reputation value is made up with packet forwarding rate and node’s residual energy. So this detection and routing mechanism is universal because it can take account of both the safety and lifetime of network. Finally, we use OPNET simulation to verify the performance of our algorithm.
文摘The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.
基金supported by Liaoning Doctoral Research Start-up Fund project(Grant No.2023-BS-215).
文摘The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.
基金Project(50675210) supported by the National Natural Science Foundation of ChinaProject(03022) supported by the Key Science Research Program of Education Ministry of ChinaProject(200410250) supported by the Youth Science Foundation of Shanxi Province, China
文摘A type of polymer-coated molybdenum powder used in selective laser sintering technology was prepared by coating polymer on molybdenum particles and frozen grinding techniques, with the maximum particle diameter of 71 μm. The laser sintering experiments of polymer-coated molybdenum powder were conducted by using the self-developed selective laser sintering machine (HLRP-350I). The method of microscopic analysis was used to investigate the dynamic laser sintering process of polymer-coated molybdenum powder. Based on the study, the laser sintering mechanisms of polymer-coated molybdenum powder were presented. It is found that the mechanism is viscous flow when the laser sintering temperature is between 100 ℃ and 160 ℃, which can be described by a two-sphere model; and the mechanism is melting /solidification when the temperature is above 160 ℃.
基金Supported by the National Natural Science Fundation of China.
文摘XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.
基金Supported by the National Natural Science Foundation of China(61472161,61402195,61502198)
文摘Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.
文摘By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Then choosing the one as mechanical actuators, the workspace of the 4-PPPS parallel mechanism is deduced according to the rational input scheme. Finally the rationality of input scheme for this mechanism is identified on the basis of the continuity of the workspace.
基金Supported by National Natural Science Foundation of China (Grant No.52005154)Hebei Provincial Natural Science Foundation (Grant No.E2020202035)。
文摘To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation.
文摘In order to improve the reliability of the mechanical movement of the rotary electronic dobby, the kinematics analysis of the heald selection mechanism is carried out and the simulation is carried out with Matlab. Firstly, the operation mechanism of the heald selection mechanism is analyzed in detail. The conjugate cam is mapped. The cam profile curve is fitted with cubic spline interpolation. Secondly, based on the overall analysis method and the complex vector method, the kinematics analysis of the key components after the high pair low generation is performed, and the angular displacement and angular velocity of each component are calculated with the rotation of the active cam. Finally, the movement curve diagram is drawn with Matlab, which lays the foundation for the dynamic analysis and in-depth study of the selection mechanism in the future.