期刊文献+
共找到241,538篇文章
< 1 2 250 >
每页显示 20 50 100
基于Transformer模型的时序数据预测方法综述 被引量:1
1
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 transformer模型
在线阅读 下载PDF
基于CNN-BiLSTM-Transformer的舰船中压直流全电推进系统故障诊断设计
2
作者 张建良 韩涛 季瑞松 《实验技术与管理》 北大核心 2025年第1期11-18,共8页
针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时... 针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时刻下故障信号空间特征的深入提取,以提升故障特征提取的有效性;其次,以双向长短期记忆网络BiLSTM为核心设计多点特征依赖网络,利用门控机制和双向时序学习机制,实现故障信号在多个时刻之间特征依赖关系的有效学习,以提升故障诊断的准确性;然后,以Transformer为核心建立序列特征并行处理网络,通过自注意力机制实现对故障特征上下文关系的精确刻画,进而利用多头注意力机制实现特征序列的并行处理,以提升故障诊断的实时性;最后,设计舰船中压直流全电推进系统故障诊断实验方案,并开展不同故障模式下的诊断性能评估。该文方法在多种故障模式下诊断准确率和实时性均优于现有的主流故障诊断方法,有助于为舰船中压直流全电推进系统的安全运行提供更有力的技术保障。 展开更多
关键词 舰船 中压直流 全电推进系统 故障诊断 transformER
在线阅读 下载PDF
融合CNN与Transformer的遥感影像道路信息提取
3
作者 曲海成 王莹 +1 位作者 刘腊梅 郝明 《自然资源遥感》 北大核心 2025年第1期38-45,共8页
利用高分辨率遥感影像进行道路信息提取时,深度神经网络很难同时学习影像全局上下文信息和边缘细节信息,为此,该文提出了一种同时学习全局语义信息和局部空间细节的级联神经网络。首先将输入的特征图分别送入到双分支编码器卷积神经网络... 利用高分辨率遥感影像进行道路信息提取时,深度神经网络很难同时学习影像全局上下文信息和边缘细节信息,为此,该文提出了一种同时学习全局语义信息和局部空间细节的级联神经网络。首先将输入的特征图分别送入到双分支编码器卷积神经网络(convolutional neural networks,CNN)和Transformer中,然后,采用了双分支融合模块(shuffle attention dual branch fusion block,SA-DBF)来有效地结合这2个分支学习到的特征,从而实现全局信息与局部信息的融合。其中,双分支融合模块通过细粒度交互对这2个分支的特征进行建模,同时利用多重注意力机制充分提取特征图的通道和空间信息,并抑制掉无效的噪声信息。在公共数据集Massachusetts道路数据集上对模型进行测试,准确率(overall accuracy,OA)、交并比(intersection over union,IoU)和F 1等评价指标分别达到98.04%,88.03%和65.13%;与主流方法U-Net和TransRoadNet等进行比较,IoU分别提升了2.01个百分点和1.42个百分点,实验结果表明所提出的方法优于其他的比较方法,能够有效提高道路分割的精确度。 展开更多
关键词 级联神经网络 transformER 特征融合 注意力机制
在线阅读 下载PDF
CNN联合多尺度Transformer的高光谱与多光谱图像融合
4
作者 徐光宪 周伟杰 马飞 《红外技术》 北大核心 2025年第1期52-62,共11页
高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖... 高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖于核大小的卷积运算,容易导致特征融合阶段缺乏一些全局上下文信息。为保证图像融合的质量,本文提出了一种CNN(Convolutional Neural Network,CNN)联合多尺度transformer网络来实现多光谱和高光谱图像融合,结合了CNN的特征提取能力与transformer的全局建模优势。网络将融合任务分为了两个阶段,特征提取阶段和融合阶段。特征提取阶段,针对图像特性,基于卷积神经网络分别设计了不同模块用于特征提取。融合阶段,通过多尺度transformer模块从局部到全局建立信息间长距离关联,最后通过多层卷积层将特征映射为高分辨率的高光谱图像。经过在CAVE和Harvard数据集的实验结果表明,本文所提算法与其他经典算法相比,能更好地提升融合图像的质量。 展开更多
关键词 高光谱图像 多光谱图像 卷积神经网络 transformER 图像融合
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
5
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 transformER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
小数据集上基于语义的局部注意视觉Transformer方法
6
作者 冯欣 王俊杰 +1 位作者 钟声 方婷婷 《计算机应用研究》 北大核心 2025年第1期314-320,共7页
在小数据集上从零开始训练时,视觉Transformer无法与同规模的卷积神经网络媲美。基于图像的局部注意力方法,可以显著提高ViT的数据效率,但是会丢失距离较远但相关的补丁之间的信息。为了解决上述问题,提出一种双向并行局部注意力视觉Tra... 在小数据集上从零开始训练时,视觉Transformer无法与同规模的卷积神经网络媲美。基于图像的局部注意力方法,可以显著提高ViT的数据效率,但是会丢失距离较远但相关的补丁之间的信息。为了解决上述问题,提出一种双向并行局部注意力视觉Transformer的方法。该方法首先在特征层面上对补丁进行分组,在组内执行局部注意力,以利用特征空间中补丁之间的关系弥补信息丢失。其次,为了有效融合补丁之间的信息,将基于语义的局部注意力和基于图像的局部注意力并行结合起来,通过双向自适应学习来增强ViT模型在小数据上的性能。实验结果表明,该方法在计算量为15.2 GFLOPs和参数量为57.2 M的情况下,分别在CIFAR-10和CIFAR-100数据集上实现了97.93%和85.80%的准确性。相比于其他方法,双向并行局部注意力视觉Transformer在增强局部引导能力的同时,保持了局部注意力所需属性的有效性。 展开更多
关键词 深度学习 图像分类 transformER 局部注意力 基于语义的局部注意
在线阅读 下载PDF
基于Transformer和Text-CNN的日志异常检测
7
作者 尹春勇 张小虎 《计算机工程与科学》 北大核心 2025年第3期448-458,共11页
日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统... 日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统的基于Transformer的方法,难以捕捉日志序列的局部特征,针对上述问题,提出了基于Transformer和Text-CNN的日志异常检测方法LogTC。首先,通过规则匹配将日志转换成结构化的日志数据,并保留日志语句中的有效信息;其次,根据日志特性采用固定窗口或会话窗口将日志语句划分为日志序列;再次,使用自然语言处理技术Sentence-BERT生成日志语句的语义化表示;最后,将日志序列的语义化向量输入到LogTC日志异常检测模型中进行检测。实验结果表明,LogTC能够有效地检测日志数据中的异常,且在2个数据集上都取得了较好的结果。 展开更多
关键词 日志异常检测 深度学习 词嵌入 transformER Text-CNN
在线阅读 下载PDF
基于Transformer两阶段策略的古代服饰线图提取
8
作者 周蓬勃 冯龙 +1 位作者 武浩东 寇宇帆 《西北大学学报(自然科学版)》 北大核心 2025年第1期75-84,共10页
古代服饰线图提取旨在精确获取轮廓与形状信息,以助于再创作和传统服饰保护。但现有方法增加网络以提高泛化性,导致参数量大增。为此,提出了基于Transformer的两阶段边缘检测方法,旨在解决图像局部信息丢失以及模型参数量大的问题。第... 古代服饰线图提取旨在精确获取轮廓与形状信息,以助于再创作和传统服饰保护。但现有方法增加网络以提高泛化性,导致参数量大增。为此,提出了基于Transformer的两阶段边缘检测方法,旨在解决图像局部信息丢失以及模型参数量大的问题。第一阶段将图像分割成16×16粗粒度补丁,利用编码器进行全局自注意力计算以捕获补丁间依赖;第二阶段采用8×8细粒度无重叠滑动窗口覆盖图像,通过局部编码器计算窗口内注意力有效捕捉细微边缘且降低成本。设计了轻量特征融合模块,支持全局与局部特征的高效整合。实验结果表明,该方法在古代服饰和公共数据集上边缘轮廓信息提取效果优于现有方法,ODS指标平均提升15.9%。虽然OIS和AP未超过Informative Drawing,但在模型体量和耗时方面具有明显优势。 展开更多
关键词 边缘检测 transformER 轻量特征融合模块
在线阅读 下载PDF
基于Transformer多分辨率特征融合的图像压缩感知重构
9
作者 熊承义 马帅 +2 位作者 高志荣 李帆 陈文旗 《中南民族大学学报(自然科学版)》 2025年第3期400-406,共7页
利用图像多分辨率特征的交叉融合,对于改善压缩感知图像的重构质量具有较好潜能.研究了一种基于Transformer多分辨率特征融合的图像压缩感知重构方法.输入图像的测量值首先经过初始重构,得到一组分辨率降维的低分辨率初始重构图像;然后... 利用图像多分辨率特征的交叉融合,对于改善压缩感知图像的重构质量具有较好潜能.研究了一种基于Transformer多分辨率特征融合的图像压缩感知重构方法.输入图像的测量值首先经过初始重构,得到一组分辨率降维的低分辨率初始重构图像;然后,采用两个通路并行提取不同分辨率图像的特征并进行交叉融合;最后,将输出的两路特征分别用于原始图像的重构及其降采样重构.采用Transformer网络执行多分辨率图像特征的交叉融合,以更好利用图像的远距离相关性.大量实验比较结果验证了所提出的方法在平衡网络复杂度和改进重构图像质量方面的有效性. 展开更多
关键词 多分辨率特征 压缩感知 交叉融合 transformer方法
在线阅读 下载PDF
融合级联Transformer和YOLOv8的膝关节多类别囊肿检测方法研究
10
作者 张丽媛 张驰 +1 位作者 蒋振刚 唐雄风 《生物医学工程研究》 2025年第1期58-66,共9页
针对膝关节囊肿磁共振(MR)影像中囊肿与关节内积液及其他组织特征相似性高,边界模糊的问题,本研究提出了一种膝关节囊肿病变检测模型YOLO-Cyst。首先,在骨干网络部分采用级联Vision Transformer模块获取长距离上下文信息,提高囊肿检测... 针对膝关节囊肿磁共振(MR)影像中囊肿与关节内积液及其他组织特征相似性高,边界模糊的问题,本研究提出了一种膝关节囊肿病变检测模型YOLO-Cyst。首先,在骨干网络部分采用级联Vision Transformer模块获取长距离上下文信息,提高囊肿检测的准确性;其次,在YOLOv8的跨阶段部分连接与双融合模块中引入可变形大核注意力模块,增强模型的局部特征提取能力。实验结果表明:与YOLOv8相比,YOLO-Cyst的mAP50和mAP50-95指标分别提高了5.1%和0.8%;与Faster R-CNN和DETR相比,YOLO-Cyst的mAP50指标分别提高了23.9%和13.0%,mAP50-95指标分别提升了10.7%和6.8%。本研究所提算法能有效学习丰富的膝关节囊肿特征表示,实现对不同类型和形态的囊肿的精确检测。 展开更多
关键词 膝关节囊肿 目标检测 上下文信息 transformER YOLOv8
在线阅读 下载PDF
基于Transformer与注意力机制的肺部肿瘤分割方法
11
作者 曾安 王丹 +4 位作者 杨宝瑶 张小波 石镇维 刘再毅 潘丹 《广东工业大学学报》 2025年第1期24-32,共9页
肺部肿瘤的准确分割对于肿瘤的诊断和治疗具有重要作用,然而肺部肿瘤分割中存在病灶与周围组织的对比度低、肿瘤与正常组织易粘连和背景噪声大等问题。针对这些问题,本文提出了一种基于Transformer和注意力机制的肺部肿瘤分割方法。在Tr... 肺部肿瘤的准确分割对于肿瘤的诊断和治疗具有重要作用,然而肺部肿瘤分割中存在病灶与周围组织的对比度低、肿瘤与正常组织易粘连和背景噪声大等问题。针对这些问题,本文提出了一种基于Transformer和注意力机制的肺部肿瘤分割方法。在Transformer编码器阶段引入全局和局部的注意力机制,使得网络可以同时关注全局和局部的上下文信息;在跳跃连接阶段,使用通道优先卷积注意力机制,可以增强复杂病灶的空间感知能力和降低通道维度冗余,从而提高肿瘤的分割精度。在私有数据集GDPH和公共数据集LUNG1上的测试结果表明,本文方法相比其他8种分割方法,Dice指标在两个数据集上表现最优,分别为90.96%和88.18%,可以为临床的诊疗提供可靠辅助。 展开更多
关键词 肺部肿瘤 医学图像分割 卷积神经网络 transformER 注意力机制
在线阅读 下载PDF
一种融合Transformer的多尺度结构图像去模糊方法
12
作者 郭业才 阳刚 毛湘南 《电光与控制》 北大核心 2025年第3期62-68,共7页
针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模... 针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模块利用双旁路结构将局部特征信息和全局特征信息有效地结合起来,同时简化Transformer以提升计算效率;其次,为了缓解卷积操作缺乏输入内容自适应的缺点,将通道注意力引入到特征融合模块中来动态地学习有用信息;最后,在基准数据集GoPro上,所提方法取得的峰值信噪比为31.87 dB,结构相似度为0.952。实验结果表明,所提方法与主流方法相比能够有效地复原图像细节特征,并且能够提升后续计算机视觉任务的鲁棒性。 展开更多
关键词 图像去模糊 多尺度结构 transformER 卷积神经网络 注意力机制
在线阅读 下载PDF
基于多重蒸馏与Transformer的遥感图像超分辨率重建
13
作者 王军 陈莹莹 程勇 《计算机系统应用》 2025年第2期225-236,共12页
现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-re... 现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果. 展开更多
关键词 超分辨率重建 多重蒸馏 transformER 双注意力机制 遥感图像
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测
14
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 transformER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于CNN-Transformer的钢轨表面缺陷识别
15
作者 张春光 许嘉瑞 马骏 《计算机与数字工程》 2025年第2期540-544,共5页
依靠铁路工人人工巡检钢轨表面缺陷,存在较大误差,耗费大量人力物力,制约了我国铁路行业的健康发展。针对上述问题,论文设计了一种基于CNN-Transformer的钢轨表面缺陷识别方法;使用Transformer层的堆叠代替标准卷积的矩阵乘法用以对卷... 依靠铁路工人人工巡检钢轨表面缺陷,存在较大误差,耗费大量人力物力,制约了我国铁路行业的健康发展。针对上述问题,论文设计了一种基于CNN-Transformer的钢轨表面缺陷识别方法;使用Transformer层的堆叠代替标准卷积的矩阵乘法用以对卷积提取的高层语义信息进行全局建模;同时引入轻量级的CNN网络GhostNet,提取图像特征,以减少计算参数,补偿因使用Transformer而缺乏归纳偏置的缺点。结果显示,基于论文方法的钢轨表面缺陷识别精度达到94.51%,高于VGG16、ResNet50、MobileNet等传统的CNN网络,且计算成本更低,为机器视觉在钢轨维护领域的应用提供了重要参考。 展开更多
关键词 钢轨检修 缺陷分类 视觉transformer GhostNet
在线阅读 下载PDF
一种基于FastText-Transformer的微博作者身份识别
16
作者 蔡满春 陈政 何泉 《中国人民公安大学学报(自然科学版)》 2025年第1期54-59,共6页
随着网络文本的快速增长和社交媒体的普及,识别文本作者身份的需求日益增加,对来源追溯、网络安全以及社会管理等领域具有重要意义。而针对自媒体庞大且语义灵活的中文网络短文本作者身份识别仍然存在很大挑战。为实现自动化特征提取,... 随着网络文本的快速增长和社交媒体的普及,识别文本作者身份的需求日益增加,对来源追溯、网络安全以及社会管理等领域具有重要意义。而针对自媒体庞大且语义灵活的中文网络短文本作者身份识别仍然存在很大挑战。为实现自动化特征提取,提高识别准确率,通过基于深度学习框架和改进FastText模型,提升词向量表示质量,将FastText模型输出的词向量输入到改进的Transformer Encoder模型中,提升了分类质量。实验结果表明提出的算法模型对微博数据集文本作者身份识别准确率达92.3%,可以实现微博作者身份识别。 展开更多
关键词 作者识别 FastText模型 transformer模型
在线阅读 下载PDF
基于音乐情感的ERoPE-Transformer音乐生成方法
17
作者 张玉梅 陈章杰 +2 位作者 吕小姣 延成岭 卢恒 《榆林学院学报》 2025年第2期78-86,共9页
针对音乐生成缺乏情感表达和交互性的问题,提出一种基于音乐情感的ERoPE-Transformer音乐生成方法。基于情感的旋转位置编码Transformer模型(Emotion Rotary Position Embedding Transformer,ERoPE-Transformer)以CP Transformer模型为... 针对音乐生成缺乏情感表达和交互性的问题,提出一种基于音乐情感的ERoPE-Transformer音乐生成方法。基于情感的旋转位置编码Transformer模型(Emotion Rotary Position Embedding Transformer,ERoPE-Transformer)以CP Transformer模型为基础模型,在CP编码的基础上加入情感标签,将音乐序列转换成离散的符号序列,并且引入旋转位置编码,提高模型的外推性,更好地捕获长序列建模中的音乐信息和情感特征。最后通过客观和主观实验对音乐质量和情感效果进行验证,与其他常用的音乐生成模型进行比较,包括Transformer-XL模型、CP Transformer模型和CEG-Transformer模型。客观实验从音高、节奏和音乐结构三个方面评价音乐质量,同时采用DUPSO-DSKSVM民歌快速分类算法对音乐情感进行分类,以验证生成音乐的情感效果。主观实验通过人耳听力测试从不同方面对音乐质量进行打分评价,同时使用人耳听力测试对音乐的情感效果进行评价。实验结果表明,本文提出的ERoPE-Transformer模型在音乐质量和情感表达上都有很好的效果,优于其他三种方法。 展开更多
关键词 情感音乐生成 transformer网络 旋转位置编码
在线阅读 下载PDF
局部特征增强的磁共振图像Transformer重构 被引量:1
18
作者 熊承义 陈文旗 +2 位作者 高志荣 马帅 李帆 《中南民族大学学报(自然科学版)》 CAS 2025年第1期50-57,共8页
研究了一种基于多头自注意力与卷积特征融合的磁共振图像Transformer重构方法.采用U型网络结构,通过学习图像的多尺度特征以提升重构性能.采用深度分离卷积与多头自注意力融合的Swin Transformer结构,改善网络的特征学习能力.在CC359-Br... 研究了一种基于多头自注意力与卷积特征融合的磁共振图像Transformer重构方法.采用U型网络结构,通过学习图像的多尺度特征以提升重构性能.采用深度分离卷积与多头自注意力融合的Swin Transformer结构,改善网络的特征学习能力.在CC359-Brain数据集下基于多种采样模式进行仿真实验,结果证明了该方法在提升磁共振图像重构质量与降低系统复杂度方面的有效性. 展开更多
关键词 磁共振成像 卷积神经网络 变换器 深度学习
在线阅读 下载PDF
基于Transformer和门控融合机制的图像去雾算法
19
作者 王燕 陈燕燕 +1 位作者 刘晶晶 胡津源 《计算机系统应用》 2025年第2期1-10,共10页
针对现有的图像去雾算法仍然存在去雾不彻底、去雾后的图像边缘模糊、细节信息丢失等问题,本文提出了一种基于Transformer和门控融合机制的图像去雾算法.通过改进的通道自注意力机制提取图像的全局特征,提高模型处理图像的效率,设计多... 针对现有的图像去雾算法仍然存在去雾不彻底、去雾后的图像边缘模糊、细节信息丢失等问题,本文提出了一种基于Transformer和门控融合机制的图像去雾算法.通过改进的通道自注意力机制提取图像的全局特征,提高模型处理图像的效率,设计多尺度门控融合块捕获不同尺度的特征,门控融合机制通过动态调整权重,提高模型对不同雾化程度的适应能力,同时更好地保留图像边缘及细节信息,并使用残差连接增强特征的重用性,提高模型泛化能力.经实验验证,所提出的去雾算法可以有效恢复真实有雾图像中的内容信息,在合成的有雾图像数据集SOTS上的峰值信噪比达到了34.841 dB,结构相似性达到了0.984,去雾后的图像内容信息完整且没有出现细节信息模糊和去雾不彻底等现象. 展开更多
关键词 图像去雾 transformER 自注意力机制 门控融合机制 多尺度特征融合
在线阅读 下载PDF
基于上下文感知的Transformer多模态情感分析研究
20
作者 孙庆英 周含 +1 位作者 陈欣怡 刘思妍 《淮阴师范学院学报(自然科学版)》 2025年第1期1-7,共7页
旨在探索一种结合视觉和听觉信息的多模态情感识别方法,以提高情感状态检测的准确性和鲁棒性.提出了一个基于Transformer编码器和长短期记忆(Long Short-Term Memory,LSTM)网络的混合模型,用于处理和分析来自视频和音频的情感数据.首先... 旨在探索一种结合视觉和听觉信息的多模态情感识别方法,以提高情感状态检测的准确性和鲁棒性.提出了一个基于Transformer编码器和长短期记忆(Long Short-Term Memory,LSTM)网络的混合模型,用于处理和分析来自视频和音频的情感数据.首先使用Transformer编码器对多模态数据进行统一编码表示,然后利用LSTM网络对时序信息进行建模,以捕捉不同模态信息之间的交互.通过在MOSI数据集上的实验验证,提出的模型在情感识别任务上尤其是在处理复杂情感表达和非言语线索方面表现出了优越的性能. 展开更多
关键词 多模态情感识别 深度学习 长短期记忆网络 自注意力机制 transformER
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部