期刊文献+
共找到131,906篇文章
< 1 2 250 >
每页显示 20 50 100
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
1
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS CLASSIFICATION AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
Transfer RNA-derived small RNA serves as potential non-invasive diagnostic marker and a novel therapeutic target for acute pancreatitis
2
作者 Jing Zhang Chun-Lin Ou 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期152-156,共5页
Transfer RNA(tRNA)-derived fragments,a new type of tRNA-derived small RNA(tsRNA),can be cleaved from tRNA by enzymes to regulate target gene expression at the transcriptional and translational levels.tsRNAs are not on... Transfer RNA(tRNA)-derived fragments,a new type of tRNA-derived small RNA(tsRNA),can be cleaved from tRNA by enzymes to regulate target gene expression at the transcriptional and translational levels.tsRNAs are not only degradation fragments but also have biological functions,including those in immune inflammation,metabolic disorders,and cell death.tsRNA dysregulation is closely associated with multiple diseases,including various cancers and acute pancreatitis(AP).AP is a common gastrointestinal disease,and its incidence increases annually.AP development is associated with tsRNAs,which regulate cell injury and induce inflammation,especially pyroptosis and ferroptosis.Notably,serum tRF36 has the potential to serve as a non-invasive diagnostic biomarker and leads to pancreatic acinar cell ferroptosis causing inflammation to promote AP.We show the characteristics of tsRNAs and their diagnostic value and function in AP,and discuss the potential opportunities and challenges of using tsRNAs in clinical applications and research. 展开更多
关键词 transfer RNA derived small RNAs Acute pancreatitis Liquid biopsy BIOMARKER Cell pyroptosis Ferroptosis
在线阅读 下载PDF
Efficient Transfer of Patients with Critical Illnesses from General Wards to Intensive Care Units
3
作者 Chien-Ming Tsao Tzu-Tsui Tsao 《Open Journal of Nursing》 2025年第1期67-77,共11页
Transferring patients with critical illnesses from general wards to intensive care units (ICUs) is a crucial and time-sensitive process. This article presents strategies for improving the efficiency of patient transfe... Transferring patients with critical illnesses from general wards to intensive care units (ICUs) is a crucial and time-sensitive process. This article presents strategies for improving the efficiency of patient transfers, particularly in hospitals where intensive care units are located in buildings separate from general wards. Patient transfers comprise several steps: physicians issue orders, relatives are notified, equipment is prepared, and medical staff coordinate. We identified three factors that influence transfer time: preparation time for bed transfer, time required for shift handovers, and time required for between-ward patient movement. Unfamiliarity with transfer routes and long elevator wait times were factors that also influenced transfer time. The following strategies were proposed: develop a standardized material checklist, design key notes for patient transfers, and optimize transfer routes. These strategies reduced transfer times by 40% to 43%. This study demonstrates that by addressing logistical challenges and streamlining relevant procedures, hospitals can enhance safety and quality of care during patient transfers. 展开更多
关键词 Critical Illnesses Intensive Care Unit (ICU) Patient Safety Time Management transfer Process Optimization Patient transfer
在线阅读 下载PDF
Flow and heat transfer characteristics of regenerative cooling parallel channel
4
作者 JU Yinchao LIU Xiaoyong +1 位作者 XU Guoqiang DONG Bensi 《推进技术》 北大核心 2025年第1期163-171,共9页
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat... Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design. 展开更多
关键词 Regenerative cooling Heat transfer Flow resistance ENGINE Parallel channel
在线阅读 下载PDF
Brachioradialis tendon transfer and palmaris longus tendon graft for thumb avulsion:A case report and review of literature
5
作者 Pierre Curings Sonia Ramos-Pascual +4 位作者 Kinga Michalewska Nicolas Gibert Lionel Erhard Mo Saffarini AlexisNogier 《World Journal of Clinical Cases》 SCIE 2025年第4期48-55,共8页
BACKGROUND Thumb replantation following complete traumatic avulsion requires complex techniques to restore function,especially in cases of avulsion at the level of the metacarpophalangeal joint(MCP I)and avulsion of t... BACKGROUND Thumb replantation following complete traumatic avulsion requires complex techniques to restore function,especially in cases of avulsion at the level of the metacarpophalangeal joint(MCP I)and avulsion of the flexor pollicis longus(FPL)at the musculotendinous junction.Possible treatments include direct tendon suture or tendon transfer,most commonly from the ring finger.To optimize function and avoid donor finger complications,we performed thumb replantation with flexion restoration using brachioradialis(BR)tendon transfer with palmaris longus(PL)tendon graft.CASE SUMMARY A 20-year-old left-handed male was admitted for a complete traumatic left thumb amputation following an accident while sliding from the top of a handrail.The patient presented with skin and bone avulsion at the MCP I,avulsion of the FPL tendon at the musculotendinous junction(zone 5),avulsion of the extensor pollicis longus tendon(zone T3),and avulsion of the thumb’s collateral arteries and nerves.The patient was treated with two stage thumb repair.The first intervention consisted of thumb replantation with MCP I arthrodesis,resection of avulsed FPL tendon and implantation of a silicone tendon prosthesis.The second intervention consisted of PL tendon graft and BR tendon transfer.Follow-up at 10 months showed good outcomes with active interphalangeal flexion of 70°,grip strength of 45 kg,key pinch strength of 15 kg and two-point discrimination threshold of 4 mm.CONCLUSION Flexion restoration after complete thumb amputation with FPL avulsion at the musculotendinous junction can be achieved using BR tendon transfer with PL tendon graft. 展开更多
关键词 Brachioradialis tendon transfer Flexor pollicis longus Palmaris longus tendon graft REPLANTATION Thumb amputation Thumb avulsion Case report
在线阅读 下载PDF
Experimental Study of Forced Convective Heat Transfer in a Copper Tube Using Three Types of Nanofluids
6
作者 Zahraa N.Hussain Jamal M.Ali +2 位作者 Hasan S.Majdi Abbas J.Sultan H.Al-Naseri 《Fluid Dynamics & Materials Processing》 2025年第2期351-370,共20页
The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances.This study investigates experimentally the turbulent convective heat transfer characteristics of wat... The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances.This study investigates experimentally the turbulent convective heat transfer characteristics of waterbased nanofluids containing TiO_(2),CuO,and graphene nanoplatelet(GNP)nanoparticles as they flow through a copper tube.Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations(0.01,0.02,and 0.03 vol.%)and temperatures(25℃,35℃,and 45℃).The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid.Notably,both the friction factor and heat transfer coefficient increase with higher nanoparticle volume concentrations at a constant Reynolds number.The results further reveal that the GNP/water nanofluid,with a volume concentration of 0.03%at 45℃,exhibit the highest Nusselt number,followed by the CuO/water and TiO_(2)/water nanofluids,with respective increases of 17.8%,11.09%,and 8.11%. 展开更多
关键词 NANOFLUID heat transfer coefficient thermal conductivity heat transfer enhancement
在线阅读 下载PDF
Theoretical Study on Photoinduced Triplet Electron Transfer at the Interface of Pd-Octaethylporphyrin and Tungsten Disulfide
7
作者 Yang Zhang Wen-Qi Zhao +3 位作者 Wen-Kai Chen Xiao-Ying Xie Wei-Hai Fang Ganglong Cui 《Chinese Journal of Chemical Physics》 2025年第1期113-124,I0050-I0054,I0057,共18页
Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance... Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance efficiency of such devices,yet the underlying mecha-nism,especially the roles of optical-ly dark triplets and spatially sepa-rated charge transfer states,is poorly understood.In the present work,we obtain the struc-tures of distinct excited states and investigate how they are involved in the charge transfer process at the Pd-octaethylporphyrin(PdOEP)and WS_(2) interface in terms of their energies and couplings.The results show that electron transfer from the triplet PdOEP formed via intersystem crossing prevails over direct electron transfer from the singlet(two orders of magnitude faster).Further analysis reveals that the relatively higher rate of triplet electron transfer compared to singlet electron transfer is mainly attributed to a smaller reorganization energy,which is dominated by the out-of-plane vibrations of the organic component.The work emphasizes the important roles of the optically dark triplets in the electron transfer of the PdOEP@WS_(2) heterostructure,and provides valuable theoretical insights for further improv-ing the optoelectronic performance of TMD-based devices. 展开更多
关键词 Interfacial charge transfer Photoinduced carrier dynamics Theoretical study Pd-octaethylporphyrin Triplet electron transfer Tungsten disulfide
在线阅读 下载PDF
Flow and Heat Transfer Characteristics of Natural Gas Hydrate Riser Transportation
8
作者 Chenhong Li Guojin Han +6 位作者 Hua Zhong Chao Zhang Rui Zhang Jonggeun Choe Chen Xing Xuewen Cao Jiang Bian 《Energy Engineering》 2025年第4期1287-1309,共23页
Extracted natural gas hydrate is a multi-phase and multi-component mixture,and its complex composition poses significant challenges for transmission and transportation,including phase changes following extraction and ... Extracted natural gas hydrate is a multi-phase and multi-component mixture,and its complex composition poses significant challenges for transmission and transportation,including phase changes following extraction and sediment deposition within the pipeline.This study examines the flow and heat transfer characteristics of hydrates in a riser,focusing on the multi-phase flow behavior of natural gas hydrate in the development riser.Additionally,the effects of hydrate flow and seawater temperature on heat exchange are analyzed by simulating the ambient temperature conditions of the South China Sea.The findings reveal that the increase in unit pressure drop is primarily attributed to higher flowvelocities,which result in increased friction of the hydrate flowwithin the development riser.For example,at a hydrate volume fraction of 10%,the unit pressure drop rises by 166.65%and 270.81% when the average inlet velocity is increased from1.0 to 3.0m/s(a two-fold increase)and 5.0 m/s(a four-fold increase),respectively.Furthermore,the riser outlet temperature rises with increasing hydrate flowrates.Under specific heat loss conditions,the flowratemust exceed a minimum threshold to ensure safe transportation.The study also indicates that the riser outlet temperature increases with higher seawater temperatures.Within the seawater temperature range of 5℃ to 15℃,the heat transfer efficiency is reduced compared to the range of 15℃ to 20℃.This discrepancy is due to the fact that as the seawater temperature rises,the convective heat transfer coefficient between the hydrate and the inner wall of the riser also increases,leading to improved overall heat transfer between the hydrate and the pipeline. 展开更多
关键词 Natural gas hydrate multi-phase flow heat transfer numerical simulation
在线阅读 下载PDF
Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing
9
作者 Miaojie Yu Weiwei Zhang +4 位作者 Xueyan Liu Guohui Zhao Jun Du Yongzhen Wu Wei-Hong Zhu 《Green Energy & Environment》 2025年第2期390-398,共9页
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b... Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration. 展开更多
关键词 Polymer photocatalysts NANOPARTICLES Hydrogen evolution Forster resonance energy transfer
在线阅读 下载PDF
Identification algorithm of low-count energy spectra under short-duration measurement based on heterogeneous sample transfer
10
作者 Hao-Lin Liu Hai-Bo Ji +1 位作者 Jiang-Mei Zhang Jing Lu 《Nuclear Science and Techniques》 2025年第3期12-26,共15页
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ... In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements. 展开更多
关键词 Radionuclide identification Low-count Gamma energy spectral analysis HETEROGENEOUS transfer learning
在线阅读 下载PDF
Effect of SurfaceWettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe
11
作者 Wei Zhang Haojie Chen +1 位作者 Kunyu Cheng Yulong Zhang 《Frontiers in Heat and Mass Transfer》 2025年第1期361-381,共21页
The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation secti... The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation section paired with superhydrophilic,superhydrophobic,and hybrid condensation section).The Volume of Fluid(VOF)model was utilized to capture the phase-change process within the PHPs.The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes.The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the PHPs.The overall heat transfer performance of the superhydrophobic surface was significantly improved at low heat flux.Under medium to high heat flux,the superhydrophilic condensation section exhibits a strong oscillation effect and leads to the thickening of the liquid film.In addition,the hybrid surface possesses the heat transfer characteristics of both superhydrophilic and superhydrophobic walls.The hybrid condensation section exhibited the lowest thermal resistance by 0.45 K/W at the heat flux of 10731 W/m^(2).The thermal resistance is reduced by 13.1%and 5.4%,respectively,compared to the superhydrophobic and superhydrophilic conditions.The proposed surface-modification method for achieving highly efficient condensation heat transfer is helpful for the design and operation of device-cooling components. 展开更多
关键词 Pulsating heat pipe surface wettability flow pattern heat transfer enhancement
在线阅读 下载PDF
Simulations of GaoFen-5 Directional Polarimetric Camera(DPC) Observations Using the Advanced Vector Discrete Ordinate Radiative Transfer Model
12
作者 Yuchen XIE Ziqiang ZHU +2 位作者 Fuzhong WENG Zhengqiang LI Xiuzhen HAN 《Advances in Atmospheric Sciences》 2025年第3期486-500,共15页
In recent years,polarization remote sensing has garnered increasing attention,particularly within the realm of meteorology.To accurately simulate polarization information,the vector discrete-ordinate radiative transfe... In recent years,polarization remote sensing has garnered increasing attention,particularly within the realm of meteorology.To accurately simulate polarization information,the vector discrete-ordinate radiative transfer(VDISORT)model developed earlier by the community is further enhanced to an advanced version(referred to as A-VDISORT)through an improved ocean surface reflection.The Fresnel reflection matrix,which includes wind-generated roughness and shading effects,is served by an ocean bidirectional reflection distribution function(BRDF).The simulation from AVDISORT is compared with SCIATRAN for a Rayleigh scattering atmosphere,and the influence of water-leaving radiance is analyzed by the PSTAR(Polarized System for Transfer of Atmospheric Radiation) model.For GaoFen-5 Directional Polarimetric Camera(DPC) observations with polarization and multi-angle information,clear-sky pixel recognition over the ocean is first carried out.The DPC reflectance of clear conditions is normalized and compared with the observations.It is shown that A-VDISORT has a high simulation accuracy with a bias of –0.0053.The difference between simulation and observation exhibits a standard normal probability distribution function. 展开更多
关键词 vector radiative transfer equation A-VDISORT ocean BRDF GF-5 DPC
在线阅读 下载PDF
A deep transfer learning model for the deformation of braced excavations with limited monitoring data
13
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections transfer learning Deep learning Finite element simulation
在线阅读 下载PDF
Sulfur atom occupying surface oxygen vacancy to boost the charge transfer and stability for aqueous Bi_(2)O_(3)electrode
14
作者 Guangmin Yang Jianyan Lin +3 位作者 Guanwu Li Tian Li Dong Wang Weitao Zheng 《Journal of Energy Chemistry》 2025年第2期751-759,I0016,共10页
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl... Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes. 展开更多
关键词 Oxygen vavancy Atomic heterostructure Structural integrity Charge/mass transfer Anchoring effect
在线阅读 下载PDF
Pressure-promoted ligand to metal energy transfer for emission enhancement of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n metal-organic framework
15
作者 Yunfeng Yang Kaiyan Yuan +3 位作者 Binhao Yang Qing Yang Yixuan Wang Xinyi Yang 《Chinese Physics B》 2025年第3期116-121,共6页
Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.H... Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs. 展开更多
关键词 lanthanide metal-organic frameworks high pressure green light photoluminescence enhancement energy transfer
在线阅读 下载PDF
Unraveling multidimensional land transfers in mountainous areas:influence of grassroots governance,geographic location,livelihood capital,and demographic factors
16
作者 XU Yinan WANG Weiwen WANG Ying 《Journal of Mountain Science》 2025年第2期611-635,共25页
Cropland abandonment has been a widespread phenomenon in mountainous areas due to the increasing number of natural disasters and the massive migration of rural labor in the process of rapid urbanization.Land transfer ... Cropland abandonment has been a widespread phenomenon in mountainous areas due to the increasing number of natural disasters and the massive migration of rural labor in the process of rapid urbanization.Land transfer is a crucial prerequisite for ensuring food security and fostering rural revitalization.How to promote land transfer in mountainous areas remains a challenging but important task.Nevertheless,there is a dearth of research examining land transfers among farm households that specifically address mountainous regions,and the influence of grassroots governance and geographic location has not been thoroughly elucidated within this particular context.Based on 895household samples collected in Dabie Mountainous Area in China,this study employs binary and ordinal logistic regression models to provide a more comprehensive analysis on land transfers among rural households and the determinants,including the decision to transfer land,the existence of land transfer rents,the channel of land transfer,the duration of the transfer,the pre-transfer cultivation situation,and the level of satisfaction with the land transfer rent.The findings reveal that grassroots governance,geographic location,livelihood capital,and demographic factors significantly influence land transfers among rural households.Specifically,villagers'public participation positively affects land transfer participation(β=0.235,p<0.05),while the operation of village rules and regulations negatively impacts it(β=-0.296,p<0.05).Village cadre satisfaction positively influences both land transfer rent(β=0.274,p<0.05)and rent satisfaction(β=0.303,p<0.05).Improved civil relations in the village correlate with lower land transfer rent(β=-0.511,p<0.05),while a better social atmosphere is associated with higher satisfaction with transfer rent(β=0.575,p<0.01).Households at higher elevations tend to prefer government-mediated land transfers with longer durations.The distances to the township and county centers have contrasting effects on land transfer rent,but their impacts on participation in land transfer,choice of transfer channel,and duration are consistent.The study also found that different types of livelihood capital,as well as the demographic characteristics of households,significantly affect various aspects of land transfer.These empirical findings can inform policymaking to promote more efficient land transfers in mountainous region. 展开更多
关键词 Land transfer Grassroots governance Geographic location Livelihood capital Demographic factors Dabie Mountainous Area China
在线阅读 下载PDF
Ultrahigh Energy and Power Density in Ni-Zn Aqueous Battery via Superoxide-Activated Three-Electron Transfer
17
作者 Yixue Duan Bolong Li +4 位作者 Kai Yang Zheng Gong Xuqiao Peng Liang He Derek Ho 《Nano-Micro Letters》 2025年第4期63-76,共14页
Aqueous Ni-Zn microbatteries are safe,reliable and inexpensive but notoriously suffer from inadequate energy and power densities.Herein,we present a novel mechanism of superoxide-activated Ni substrate that realizes t... Aqueous Ni-Zn microbatteries are safe,reliable and inexpensive but notoriously suffer from inadequate energy and power densities.Herein,we present a novel mechanism of superoxide-activated Ni substrate that realizes the redox reaction featuring three-electron transfers(Ni↔Ni3+).The superoxide activates the direct redox reaction between Ni substrate and KNiO_(2)by lowering the reaction Gibbs free energy,supported by in-situ Raman and density functional theory simulations.The prepared chronopotentiostatic superoxidation-activated Ni(CPS-Ni)electrodes exhibit an ultrahigh capacity of 3.21 mAh cm^(-2)at the current density of 5 mA cm^(-2),nearly 8 times that of traditional one-electron processes electrodes.Even under the ultrahigh 200 mA cm^(-2)current density,the CPS-Ni electrodes show 86.4%capacity retention with a Columbic efficiency of 99.2%after 10,000 cycles.The CPS-Ni||Zn microbattery achieves an exceptional energy density of 6.88 mWh cm^(-2)and power density of 339.56 mW cm^(-2).Device demonstration shows that the power source can continuously operate for more than 7 days in powering the sensing and computation intensive practical application of photoplethysmographic waveform monitoring.This work paves the way to the development of multi-electron transfer mechanisms for advanced aqueous Ni-Zn batteries with high capacity and long lifetime. 展开更多
关键词 Superoxide Multiple electron transfer Ni aqueous battery AIoT power source Wearable health monitoring
在线阅读 下载PDF
Semiconductor-cocatalyst interfacial electron transfer in actual photocatalytic reaction
18
作者 Jiazang Chen 《Chinese Journal of Catalysis》 2025年第1期213-222,共10页
Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction.However,the formed potential barriers severely ... Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction.However,the formed potential barriers severely slow this interfacial electronic process by thermionic emission.Although trap-assisted charge recombination can transfer electrons from semiconductor to cocatalyst and can even be evident under weak illumination,the parallel connection with thermionic emission makes the photocatalytic photon utilization encounter a minimum along the variation of light intensity.By this cognition,the light-intensity-dependent photocatalytic behaviors can be predicted by simulating the photoinduced semiconductor-cocatalyst interfacial electron transfer that mainly determines the reaction rate.We then propose a(photo)electrochemical method to evaluate the time constants for occurring this interfacial electronic process in actual photocatalytic reaction without relying on extremely high photon flux that is required to generate discernible optical signal in common instrumental methods based on ultrafast pulse laser.The evaluated decisecond-second timescale can accurately guide us to develop certain strategies to facilitate this rate-determining step to improve photon utilization. 展开更多
关键词 Semiconductor-cocatalyst interfacial electron transfer Trap-assisted charge recombination Thermionic emission Photocatalyticphoton utilization Actual photocatalytic reaction
在线阅读 下载PDF
Enhanced Boiling Heat Transfer in Water Pools with Perforated Copper Beads and Sodium Dodecyl Sulfate Surfactant
19
作者 Pengcheng Cai Teng Li +4 位作者 Jianxin Xu Xiaobo Li Zhiqiang Li Zhiwen Xu Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第2期325-349,共25页
In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool... In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate(SDS)surfactant in saturated deionized water.Experiments were conducted at standard atmospheric pressure,with heat flux ranging from 20 to 100 kW/m2.The heating surface,positioned below the layer of freely moving copper beads,allowed the particle layer to shift due to liquid convection and steam nucleation.The study reports on the influence of copper bead diameter(2,3,4,and 5 mm),particle quantity,arrangement,and SDS concentration(20,200,and 500 ppm).It is shown that the combination of 5 mm particles and a 500 ppm SDS concentration can yield a remarkable 139%improvement in heat transfer efficiency.As demonstrated by direct flow visualization,bubble formation occurs primarily in the gaps between the particles and the heated surface,with the presence of SDS reducing bubble size and accelerating bubble detachment. 展开更多
关键词 Pool boiling heat transfer enhancement perforated copper beads SURFACTANT bubble nucleation mechanism flow visualization
在线阅读 下载PDF
Production of unknown neutron-deficient isotopes with Z=99-106 in multinucleon transfer reaction^(124)Xe+^(249)Cf
20
作者 Na Tang Si-Ying Ma +2 位作者 Rong An Jing-Jing Li Feng-Shou Zhang 《Nuclear Science and Techniques》 2025年第3期95-104,共10页
The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were repr... The dinuclear system approach,coupled with the statistical decay model GEMINI++,was used to investigate multinucleon transfer reactions.Experimental production cross-sections in the reaction^(129)Xe+^(248)Cm were reproduced to assess the reliability of these theoretical models.The production of neutron-deficient transcalifornium nuclei with Z=99-106 was examined in multinucleon transfer reactions,including^(124)Xe+^(248)Cm,^(124)Xe+^(249)Cf,and^(129)Xe+^(249)Cf.Both the driving potential and the neutron-to-proton equilibration ratio were found to dominate the nucleon transfer process.The reaction^(124)Xe+^(249)Cf is proposed as a promising projectile-target combination for producing neutron-deficient isotopes with Z=99-106,with the optimal incident energy identified as E_(c.m.)=533.64 MeV.Production cross-sections of 25 unknown neutron-deficient trancalifornium isotopes with cross-sections greater than 1 pb were predicted. 展开更多
关键词 Multinucleon transfer reaction Dinuclear system Unknown neutron-deficient isotopes with Z=99-106
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部