The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine func...We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.展开更多
Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber an...Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber and electro-optical engineering,microwave technology,radio wave propagation,antenna engineering,electromagnetics,signal and image processing,and power engineering.The journal is designed to be an integrated forum for university academics and industry researchers from around the world.展开更多
Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks an...Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.展开更多
Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communic...Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communications.For air-to-ground vortex wave communications,where there exists the LoS path,this paper proposes a multi-user cooperative receive(MUCR)scheme to break through the communication distance limitation caused by the characteristic of vortex wave hollow divergence.In particular,we derive the optimal radial position corresponding to the maximum intensity,which is used to adjust the waist radius.Based on the waist radius and energy ring,the cooperative ground users having the minimum angular square difference are selected.Also,the signal compensation scheme is proposed to decompose OAM signals in air-to-ground vortex wave communications.Simulation results are presented to verify the superiority of our proposed MUCR scheme.展开更多
Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technolo...Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ...Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.展开更多
To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design...To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly o...Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.展开更多
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo...Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.展开更多
Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature...Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.展开更多
High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication sys...High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)scheme.In this scheme,the preamble arrangement is combined with the access control.The preamble arrangement is realized by preamble slices which is from the virtual preamble pool.The access devices learn to queue orderly by deep reinforcement learning.The orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access time.The orderly queue is determined by interaction information among multiple agents.With the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of agents.Finally,the access performance of PSOQA is compared with other random contention schemes in different load scenarios.Simulation results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.展开更多
In recent years,the obstetrics department has advocated vaginal delivery to reduce the rate of cesarean sections.However,in clinical practice,pregnant women are prone to anxiety before childbirth,making it difficult t...In recent years,the obstetrics department has advocated vaginal delivery to reduce the rate of cesarean sections.However,in clinical practice,pregnant women are prone to anxiety before childbirth,making it difficult to perform a vaginal trial delivery smoothly.The combined approach of ADIET communication and delivery rehearsal for vaginal trial delivery can provide a reference for reducing prenatal anxiety,shortening labor duration,facilitating a smooth delivery,and ensuring the safety of both mothers and babies.AIM To analyze the effect of AIDET communication combined with labor rehearsal on vaginal trial delivery.METHODS A study conducted between January 2023 and December 2023 included 200 vaginal trials.Women were randomly assigned to an observation group(100 women),which received ADIET communication plus delivery intervention,and a control group(100 women),which received routine communication plus delivery intervention.This study aimed to compare antenatal anxiety status as measured using the Maternal Anxiety Scale,labor duration,delivery efficacy as assessed using the simplified Chinese version of the Childbirth Self-Efficacy Inventory,and delivery outcomes.RESULTS After the intervention,the observation group had a lower Maternal Anxiety Scale score and higher Childbirth Self-Efficacy Inventory score(P<0.05)than the control group(P<0.05),whereas the observation group had higher natural delivery,cesarean delivery,vaginal delivery,and neonatal asphyxia rates(P<0.05).CONCLUSION For women undergoing vaginal trial delivery,a combination of AIDET communication and delivery rehearsal can relieve prenatal anxiety,enhance delivery efficiency,shorten labor duration,and somewhat improve delivery outcomes.展开更多
This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection b...This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection between software and hardware teaching and insufficient practical skills among students,a project-driven“learning-practiceapplication”teaching model is proposed.By optimizing course content,innovating teaching methods,and introducing university-industry collaboration mechanisms,the reform aligns the curriculum more closely with engineering education standards and industry demands.The approach significantly enhances students’comprehensive skills,practical abilities,and employability.This study provides theoretical foundations and practical strategies for the teaching reform of courses in communication engineering.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision ...In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.展开更多
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
基金supported by the National Natural Science Foundation of China,No.81801907(to NC)Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research,No.ZDSYS20230626091402006(to NC)+2 种基金Sanming Project of Medicine in Shenzhen,No.SZSM201911002(to SL)Foundation of Shenzhen Committee for Science and Technology Innovation,Nos.JCYJ20230807110310021(to NC),JCYJ20230807110259002(to JL)Science and Technology Program of Guangzhou,No.2024A04J4716(to TL)。
文摘We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
文摘Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber and electro-optical engineering,microwave technology,radio wave propagation,antenna engineering,electromagnetics,signal and image processing,and power engineering.The journal is designed to be an integrated forum for university academics and industry researchers from around the world.
文摘Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.
基金supported in part by National Natural Science Foundation of China under Grant 62441115 and 62201427in part by the Ministry of Industry and Information Technology of the People’s Republic of China under Grant CBG01N23-01-04.
文摘Orbital angular momentum(OAM)can achieve multifold increase of spectrum efficiency,but the hollow divergence characteristic and Line-of-Sight(LoS)path requirement impose the crucial challenges for vortex wave communications.For air-to-ground vortex wave communications,where there exists the LoS path,this paper proposes a multi-user cooperative receive(MUCR)scheme to break through the communication distance limitation caused by the characteristic of vortex wave hollow divergence.In particular,we derive the optimal radial position corresponding to the maximum intensity,which is used to adjust the waist radius.Based on the waist radius and energy ring,the cooperative ground users having the minimum angular square difference are selected.Also,the signal compensation scheme is proposed to decompose OAM signals in air-to-ground vortex wave communications.Simulation results are presented to verify the superiority of our proposed MUCR scheme.
文摘Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金supported by the National Natural Science Foundation of China under Grant U21A20449in part by Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2。
文摘Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.
基金supported in part by National Natural Science Foundation of China under Grants 62122069,62071431,and 62201507.
文摘To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680)Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011)。
文摘Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.
文摘Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department Natural Science Special Project(Grant No.23JK0680)Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313011)。
文摘Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.
基金supported in part by the National Natural Science Foundation of China under grants 61771255in part by the Provincial and Ministerial Key Laboratory Open Project under grant 20190904in part by the Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry)under Grants BE2022067,BE2022067-1 and BE2022067-2。
文摘High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)scheme.In this scheme,the preamble arrangement is combined with the access control.The preamble arrangement is realized by preamble slices which is from the virtual preamble pool.The access devices learn to queue orderly by deep reinforcement learning.The orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access time.The orderly queue is determined by interaction information among multiple agents.With the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of agents.Finally,the access performance of PSOQA is compared with other random contention schemes in different load scenarios.Simulation results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
文摘In recent years,the obstetrics department has advocated vaginal delivery to reduce the rate of cesarean sections.However,in clinical practice,pregnant women are prone to anxiety before childbirth,making it difficult to perform a vaginal trial delivery smoothly.The combined approach of ADIET communication and delivery rehearsal for vaginal trial delivery can provide a reference for reducing prenatal anxiety,shortening labor duration,facilitating a smooth delivery,and ensuring the safety of both mothers and babies.AIM To analyze the effect of AIDET communication combined with labor rehearsal on vaginal trial delivery.METHODS A study conducted between January 2023 and December 2023 included 200 vaginal trials.Women were randomly assigned to an observation group(100 women),which received ADIET communication plus delivery intervention,and a control group(100 women),which received routine communication plus delivery intervention.This study aimed to compare antenatal anxiety status as measured using the Maternal Anxiety Scale,labor duration,delivery efficacy as assessed using the simplified Chinese version of the Childbirth Self-Efficacy Inventory,and delivery outcomes.RESULTS After the intervention,the observation group had a lower Maternal Anxiety Scale score and higher Childbirth Self-Efficacy Inventory score(P<0.05)than the control group(P<0.05),whereas the observation group had higher natural delivery,cesarean delivery,vaginal delivery,and neonatal asphyxia rates(P<0.05).CONCLUSION For women undergoing vaginal trial delivery,a combination of AIDET communication and delivery rehearsal can relieve prenatal anxiety,enhance delivery efficiency,shorten labor duration,and somewhat improve delivery outcomes.
基金Quality Engineering Project of Higher Education Institutions in Anhui Province(2023aqnujyxm26,2023sx060,2023zyxwjxalk124)Natural Science Key Research Project for Higher Education Institutions of Anhui Province(2024AH051117,2024AH051126)+1 种基金Excellent Young Backbone Teachers’Domestic and Foreign Visiting and Training Program in Universities(gxgnfx20220262022)Research and Industrialization Project of High Precision Positioning System for Intelligent Connected Vehicles。
文摘This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection between software and hardware teaching and insufficient practical skills among students,a project-driven“learning-practiceapplication”teaching model is proposed.By optimizing course content,innovating teaching methods,and introducing university-industry collaboration mechanisms,the reform aligns the curriculum more closely with engineering education standards and industry demands.The approach significantly enhances students’comprehensive skills,practical abilities,and employability.This study provides theoretical foundations and practical strategies for the teaching reform of courses in communication engineering.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金supported by National Natural Science Foundation of China(Nos.62161016,61661025)Gansu Provincial Science and Technology Plan(No.20JR10RA273)。
文摘In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.