With the increasing data volume of train on-board system,real-time performance has become the most critical factor to ensure the safety of train operation.Considering that standard Ethernet cannot meet the real-time r...With the increasing data volume of train on-board system,real-time performance has become the most critical factor to ensure the safety of train operation.Considering that standard Ethernet cannot meet the real-time requirement of existing train communication network(TCN),the time-sensitive network(TSN)technology for TCN is introduced.To solve the time-delay problem,an adaptive switch queue selection mechanism for traffic scheduling is proposed.Firstly,the topology model of TCN based on TSN and the traffic model are described.Then,the K shortest path routing algorithm based on load balancing provides the optimal routing for the scheduling process.Finally,the adaptive switch queue selection mechanism is introduced to solve the aggregation flow conflict problem effectively,queue resources are properly allocated,and the gate control list(GCL)of each frame in the queue is obtained.Experimental results show that compared with the traditional constraint model,the schedulability of the model with an adaptive switch queue selection mechanism increases by 33.0%,and the maximum end-to-end delay and network jitter decrease by 19.1%and 18.6%on average respectively.It can provide theoretical support and application reference for the real-time performance optimization of TCN based on TSN.展开更多
In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This ...In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.展开更多
This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
In this paper, we present the modeling and optimization of a Real-Time Protocol(RTP) used in Train Communication Networks(TCN). In the proposed RTP, message arbitration is represented by a probabilistic model and ...In this paper, we present the modeling and optimization of a Real-Time Protocol(RTP) used in Train Communication Networks(TCN). In the proposed RTP, message arbitration is represented by a probabilistic model and the number of arbitration checks is minimized by using the probability of device activity. Our optimized protocol is fully compatible with the original standard and can thus be implemented easily. The experimental results demonstrate that the proposed algorithm can reduce the number of checks by about 50%, thus significantly enhancing bandwidth.展开更多
基金supported by the National Natural Science Foundation of China(52072081)Major Project of Science and Technology of Guangxi Province of China(Guike AB23075209)+2 种基金Guangxi Manufacturing Systems and Advanced Manufacturing Technology Key Laboratory Director Fund(24050-44-S015)Innovation Project of Guangxi Graduate Education(YCSW2024135)Major Talent Project in Guangxi Zhuang Autonomous Region。
文摘With the increasing data volume of train on-board system,real-time performance has become the most critical factor to ensure the safety of train operation.Considering that standard Ethernet cannot meet the real-time requirement of existing train communication network(TCN),the time-sensitive network(TSN)technology for TCN is introduced.To solve the time-delay problem,an adaptive switch queue selection mechanism for traffic scheduling is proposed.Firstly,the topology model of TCN based on TSN and the traffic model are described.Then,the K shortest path routing algorithm based on load balancing provides the optimal routing for the scheduling process.Finally,the adaptive switch queue selection mechanism is introduced to solve the aggregation flow conflict problem effectively,queue resources are properly allocated,and the gate control list(GCL)of each frame in the queue is obtained.Experimental results show that compared with the traditional constraint model,the schedulability of the model with an adaptive switch queue selection mechanism increases by 33.0%,and the maximum end-to-end delay and network jitter decrease by 19.1%and 18.6%on average respectively.It can provide theoretical support and application reference for the real-time performance optimization of TCN based on TSN.
基金support from the Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications(BHRC-2024-1)Beijing Jiaotong University,the National Natural Science Foundation of China(U21A20445).
文摘In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金supported by the National Natural Science Foundation of China (Nos. U1201251 and 61402248)the National Key Technologies Research and Development Program of China (No. 2015BAG14B01-02)MIIT IT funds (Research and application of TCN key technologies) of China
文摘In this paper, we present the modeling and optimization of a Real-Time Protocol(RTP) used in Train Communication Networks(TCN). In the proposed RTP, message arbitration is represented by a probabilistic model and the number of arbitration checks is minimized by using the probability of device activity. Our optimized protocol is fully compatible with the original standard and can thus be implemented easily. The experimental results demonstrate that the proposed algorithm can reduce the number of checks by about 50%, thus significantly enhancing bandwidth.