期刊文献+
共找到208,415篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:1
1
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
2
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
3
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
4
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
在线阅读 下载PDF
Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method
5
作者 Huilin Jia Shanqiao Huang Zifeng Yuan 《Computers, Materials & Continua》 SCIE EI 2025年第1期193-222,共30页
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom... In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability. 展开更多
关键词 Homogenized relaxation modulus VISCOELASTIC standard solid model reduced order homogenization fibrous composite material
在线阅读 下载PDF
Analysis of Linear and Nonlinear Vibrations of Composite Rectangular Sandwich Plates with Lattice Cores
6
作者 Alireza Moradi Alireza Shaterzadeh 《Computers, Materials & Continua》 SCIE EI 2025年第1期223-257,共35页
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic... For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate. 展开更多
关键词 Free vibration composite sandwich plate lattice core galerkin method Duffing equation multiple scales method
在线阅读 下载PDF
2D Plain and 3D Needle-punched C/SiC Composites:Low-velocity Impact Damage Behavior and Failure Mechanism
7
作者 LUAN Xingang HE Dianwei +1 位作者 TU Jianyong CHENG Laifei 《无机材料学报》 北大核心 2025年第2期205-214,I0004,共11页
Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a... Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact. 展开更多
关键词 ceramic-matrix composite FRACTURE low-velocity impact computerized tomography analysis
在线阅读 下载PDF
Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment
8
作者 Zhao-Jun Zhang Wen-Wei Wang +4 位作者 Jing-Shui Zhen Bo-Cheng Li De-Cheng Cai Yang-Yang Du Hui Huang 《Structural Durability & Health Monitoring》 EI 2025年第1期105-123,共19页
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z... This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs. 展开更多
关键词 Moment redistribution GFRP-concrete composite slabs bending moment experimental study analysis model
在线阅读 下载PDF
Physical, Thermal and Mechanical Characterization of Epoxy/Rafia Vinifera Woven Composite Materials: Application to the Comfort of Boats in Tropical Areas
9
作者 Alfred Kendem Djoumessi Nicodème Rodrigue Sikame Tagne +3 位作者 Elvis Mbou Tiaya Augustine Demze Nitidem François Ngapgue Ebenezer Njeugna 《Journal of Materials Science and Chemical Engineering》 2025年第2期1-22,共22页
The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.... The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.05 g/cm3) of the composite produced is lower than that of wood used in this field. The material has low porosity (9.8%) and is less absorbent (12.61%) than wood. The result of the thermal conductivity test by the hot plane method shows that this composite can contribute to the internal thermal insulation (an example of thermal conductivity is 0.32W/m.K) of floating boats. The mechanical tests of compression (young modulus is 22.86 GPa), resilience (1.238 J/Cm2) and hardness (233.04 BH30-2.5/187.5-15s) show that this composite is much harder and more absorbent than many wood and bio-composite materials used in the construction of pleasure boats. The abrasion test (0.005349) shows that this composite could well resist friction with the beach. 展开更多
关键词 Density THERMAL RESILIENCE Hardness ABRASION Raffia/Epoxy composite
在线阅读 下载PDF
Investigation on Clay Based Mullite-silica Rich Glass Composites
10
作者 YAN Wen SHI Jinling LI Nan 《China's Refractories》 2025年第1期18-24,共7页
Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and compos... Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and composition of the mulite and glass phases,which are related to the chemical composition of the MSRG composites based on clay.In the present work,the relationship between the phase and the chemical composition of the MSRG composites,and the effects of the chemical composition of the glass phase on the viscosity and coefficient of thermal expansion(CTE)of the glass phase were discussed on the basis of the measurements on 17 MSRG composite samples produced from clay.It is found that the Al_(2)O_(3)/SiO_(2) ratio(AS ratio)in clay strongly affects the amount of the mullite and glass phases in the MSRG composites,and the distributions of SiO_(2),TiO_(2)and Al_(2)O_(3) contents in the mullite and glass phases.With the increase of the A/S ratio of clay,the mullite content increases but the the glass phase content decreases in the MSRG composites.The viscosity and CTE of the glass phase depend on its A/S ratio and the amount of impurity oxides.When the A/S ratio in the glass phase is less than 0.15,the viscosity of the liquid formed by the melting of the glass phase at elevated temperatures rapidly increases with the decrease in the A/S ratio.The CTE of the glass phase depends on the contents of Si0_(2)and(K_(2)O+Na_(2)O). 展开更多
关键词 mullite-silica rich glass composite composition glass phase VISCOSITY coefficient of thermal expansion
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
11
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Effect of Heat Treatment on Microstructure and Properties of Fe(Al,Ta)/Fe_(2)Ta(Al)Eutectic Composite
12
作者 LI Haolin CUI Chunjuan +4 位作者 WANG Yan WANG Zhicong ZHAO Zhiqi WU Tongchao SU Haijun 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期374-381,共8页
Fe(Al,Ta)/Fe_(2)Ta(Al)eutectic composites with solidification rates of 6,20,30,and 80μm/s were prepared by a modified Bridgman directional solidification technology.The coarse Fe_(2)Ta(Al)Laves phase was precipitated... Fe(Al,Ta)/Fe_(2)Ta(Al)eutectic composites with solidification rates of 6,20,30,and 80μm/s were prepared by a modified Bridgman directional solidification technology.The coarse Fe_(2)Ta(Al)Laves phase was precipitated at the eutectic colony boundary during the solidification process,which can affect the stability of microstructure and properties of the composites.The coarse Laves phase was refined using different heat treatment processes in the present paper.The influences of different heat treatment parameters on the Laves phase content,lamella/rod spacing,and mechanical properties were investigated in detail.In addition,the corrosion behaviors of Fe(Al,Ta)/Fe_(2)Ta(Al)eutectic composites before and after being annealed heat treatment in a 3 g/L Na_(2)S_(2)O_(3)solution were also studied.It is shown that both the content of Laves phase and lamella/rod spacing are gradually decreased after heat treatment.Micro-hardness is decreased,while the yield strength,compressive strength,and corrosion resistance are improved.The optimum heat treatment process is selected as well. 展开更多
关键词 directional solidification heat treatment eutectic composite microstructure properties
在线阅读 下载PDF
Experimental investigation on the anti-detonation performance of composite structure containing foam geopolymer backfill material
13
作者 Hang Zhou Hujun Li +6 位作者 Zhen Wang Dongming Yan Wenxin Wang Guokai Zhang Zirui Cheng Song Sun Mingyang Wang 《Defence Technology(防务技术)》 2025年第1期304-318,共15页
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several... The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters. 展开更多
关键词 Explosion load composite structure Geopolymer foam Energy absorption
在线阅读 下载PDF
Heterogeneous interface enhanced polyurethane/MXene@Fe_(3)O_(4)composite elastomers for electromagnetic wave absorption and thermal conduction
14
作者 Xin An Zhaoxu Sun +5 位作者 Jiahui Shen Jiajia Zheng Aixi Sun Xiping Li Shaohua Jiang Yiming Chen 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期728-737,共10页
The development of high-performance functional composites has become a research hotspot in response to the hazards of over-heating and electromagnetic radiation in modern electronic devices.Herein,we grew magnetic Fe_... The development of high-performance functional composites has become a research hotspot in response to the hazards of over-heating and electromagnetic radiation in modern electronic devices.Herein,we grew magnetic Fe_(3)O_(4)particles in situ on the MXene layer to obtain an MXene@Fe_(3)O_(4)composite with rich heterogeneous interfaces.Owing to the unique heterostructure and the synergistic effects of multiple electromagnetic wave absorption mechanisms,the composite achieved a minimum reflection loss of-27.14 dB and an effect-ive absorption bandwidth of 2.05 GHz at an absorption thickness of 2 mm.Moreover,the MXene@Fe_(3)O_(4)composite could be encapsu-lated in thermoplastic polyurethane(TPU)via thermal curing.The obtained composite elastomer exhibited a strong tensile strength,and its thermal diffusivity was 113%higher than that of pure TPU.Such additional mechanical properties and thermal conduction features render this composite elastomer an advanced electromagnetic absorber to adapt to the ever-changing environment for expanding practical applications. 展开更多
关键词 composite elastomer MXene electromagnetic wave absorption thermal conduction
在线阅读 下载PDF
Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite
15
作者 Yemao He Johnny Qing Zhou +3 位作者 Yanan Jiao Hongshuai Lei Zeang Zhao Daining Fang 《Defence Technology(防务技术)》 2025年第2期1-16,共16页
The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ... The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy. 展开更多
关键词 UHMWPE composite Ballistic response mechanism Theoretical model Performance evaluation
在线阅读 下载PDF
Experimental study on the buckling of composite cylinders with reinforced circular hole under hydrostatic pressure
16
作者 Zhun Li Xinhu Zhang +3 位作者 Kechun Shen Jing Liu Jian Zhang Guang Pan 《Defence Technology(防务技术)》 2025年第2期231-247,共17页
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t... In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity. 展开更多
关键词 composite cylindrical shell Circular hole Reinforcing structure BUCKLING Hydrostatic pressure
在线阅读 下载PDF
Modification of Maxwell model for conductivity prediction of carbon nanotubes-filled polymer composites with tunneling effect
17
作者 Jue ZHU Longyuan LI Ningtao ZHU 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期25-36,共12页
Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improv... Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improve the sensitivity of the polymer's electrical conductivity.This paper presents a modified Maxwell model to evaluate the electrical conductivity of CNTs-filled polymer composites by introducing a transition zone to account for the tunneling effect.In this modified Maxwell model,the CNTs-filled polymer composite is modeled as a three-phase composite,consisting of a matrix(polymer),inclusions(CNTs),and a transition zone(tunneling zone).The effective electrical conductivity(EEC)of the composite is calculated based on the volume fractions and electrical conductivities of the matrix,inclusions,and transition zone.The model's validity is confirmed through the use of available test data,which demonstrates its capability to accurately capture the nonlinear conductivity behavior observed in CNTs-polymer composites.This study offers valuable insights into the design of high-performance conductive polymer nanocomposites,and enhances the understanding of electrical conduction mechanisms in CNT-dispersed polymer composites. 展开更多
关键词 carbon nanotube(CNT) POLYMER composite electrical conductivity TUNNELING Maxwell model
在线阅读 下载PDF
Effects of Different Cooling Processes on the Structure and Properties of Aluminum/Steel Composite Plate
18
作者 Yufei Zhu Runwu Jiang +2 位作者 Chao Yu Yuhua Wu Hong Xiao 《Chinese Journal of Mechanical Engineering》 2025年第1期220-232,共13页
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa... The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture. 展开更多
关键词 Al/steel composite plate Cooling method MICROSTRUCTURE Shear strength
在线阅读 下载PDF
SARS-CoV-2 proteins show great binding affinity to resin composite monomers and polymerized chains
19
作者 Pedro Henrique Sette-de-Souza Moan Jéfter Fernandes Costa Boniek Castillo Dutra Borges 《World Journal of Experimental Medicine》 2025年第1期96-103,共8页
BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the... BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the high human–human transmission of SARS-CoV-2.However,there is no evidence about how SARSCoV-2 interacts with oral structures,particularly resin composites.AIM To evaluate the interaction of SARS-CoV-2 proteins with monomers present in resin composites using in silico analysis.METHODS Four SARS-CoV-2 proteins[i.e.main protease,3C-like protease,papain-like protease(PLpro),and glycoprotein spike]were selected along with salivary amylase as the positive control,and their binding affinity with bisphenol-A glycol dimethacrylate,bisphenol-A ethoxylated dimethacrylate,triethylene glycol dimethacrylate,and urethane dimethacrylate was evaluated.Molecular docking was performed using AutoDock Vina and visualised in Chimera UCSF 1.14.The best ligand–protein model was identified based on the binding energy(ΔG–kcal/moL).RESULTS Values for the binding energies ranged from-3.6 kcal/moL to-7.3 kcal/moL.The 3-monomer chain had the lowest binding energy(i.e.highest affinity)to PLpro and the glycoprotein spike.Non-polymerised monomers and polymerised chains interacted with SARS-CoV-2 proteins via hydrogen bonds and hydrophobic interactions.Those findings suggest an interaction between SARS-CoV-2 proteins and resin composites.CONCLUSION SARS-CoV-2 proteins show affinity to non-polymerised and polymerised resin composite chains. 展开更多
关键词 composite resins COVID-19 SARS-CoV-2 Dental restorations Molecular docking simulation DENTISTRY
在线阅读 下载PDF
B2-CuZr reinforced amorphous alloy matrix composites:A review
20
作者 Wei Guo Run-hua Huang +5 位作者 Zhen Zhang Mi Zhao Jin-cheng Wang Yan-qiang Qiao Shu-lin Lü Shu-sen Wu 《China Foundry》 2025年第1期1-11,共11页
B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites... B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system. 展开更多
关键词 amorphous alloy matrix composite B2-CuZr phase PLASTICITY microstructure tailoring
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部