Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron...Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.展开更多
In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanic...In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation.展开更多
To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element ...To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element model of tire hydroplaning was established using the coupled EulerianLagrangian method,including a pneumatic tire model and a textured asphalt pavement model. Then,the frictional force on the tire-pavement interface at different speeds was calculated by the model. Based on vehicle braking mechanism and frictional energy dissipation,a calculation method for braking distance was proposed based on a three-stage braking process. The proposed method was verified by comparing the calculated hydroplaning speed and braking distance with field test results.Then,vehicle braking distances and wet friction coefficients were calculated under different conditions. The results show that thinner water film,a more complex tread pattern and higher tire inflation pressure all contribute to the vehicle braking performance; moreover, the pavement texture has obvious influence on vehicle braking behavior,especially at a high speed. The proposed method shows great effectiveness in predicting vehicle braking behavior on wet asphalt pavements.展开更多
The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption...The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.展开更多
Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate t...Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.展开更多
A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in st...A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in structure borne road noise performance. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. This paper presents an application of finite element analysis modeling along with experimental verification to predict the force transmissibility of tire and wheel assembly. The results of finite element analysis for force transmissibility are shown to be in good agreement with the results from the indoor test. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. And, the effect of the tire design parameters such as the density and modulus of a rubber and the cord stiffness on the force transmissibility is discussed. It is found that the prediction of the force transmissibility model using finite element analysis will be useful for the improvement of the road noise performance of passenger car tire.展开更多
There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl...There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.展开更多
文摘Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.
文摘In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation.
基金The National Natural Science Foundation of China(No.51378121,51778139)
文摘To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element model of tire hydroplaning was established using the coupled EulerianLagrangian method,including a pneumatic tire model and a textured asphalt pavement model. Then,the frictional force on the tire-pavement interface at different speeds was calculated by the model. Based on vehicle braking mechanism and frictional energy dissipation,a calculation method for braking distance was proposed based on a three-stage braking process. The proposed method was verified by comparing the calculated hydroplaning speed and braking distance with field test results.Then,vehicle braking distances and wet friction coefficients were calculated under different conditions. The results show that thinner water film,a more complex tread pattern and higher tire inflation pressure all contribute to the vehicle braking performance; moreover, the pavement texture has obvious influence on vehicle braking behavior,especially at a high speed. The proposed method shows great effectiveness in predicting vehicle braking behavior on wet asphalt pavements.
文摘The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.
基金The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China(2019YFE0116300)the National Natural Science Foundation of China(52308448,52250610218)the Natural Science Foundation of Heilongjiang Province of China(JJ2020ZD0015).
文摘Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.
文摘A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in structure borne road noise performance. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. This paper presents an application of finite element analysis modeling along with experimental verification to predict the force transmissibility of tire and wheel assembly. The results of finite element analysis for force transmissibility are shown to be in good agreement with the results from the indoor test. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. And, the effect of the tire design parameters such as the density and modulus of a rubber and the cord stiffness on the force transmissibility is discussed. It is found that the prediction of the force transmissibility model using finite element analysis will be useful for the improvement of the road noise performance of passenger car tire.
文摘There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.