期刊文献+
共找到203,222篇文章
< 1 2 250 >
每页显示 20 50 100
The AVO Effect of Formation Pressure on Time-Lapse Seismic Monitoring in Marine Carbon Dioxide Storage
1
作者 Fan Wu Qingping Li +1 位作者 Yufa He Jingye Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期645-655,共11页
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio... The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs. 展开更多
关键词 time-lapse seismic monitoring Marine carbon dioxide storage AVO modeling Formation pressure Anisotropic Rockphysical model
在线阅读 下载PDF
Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage
2
作者 Bin Liu Yutong Fu Pengfei Wen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期628-633,共6页
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established tec... To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS. 展开更多
关键词 Carbon capture and storage Hcable Seismic monitoring High resolution image High frequency seismic source
在线阅读 下载PDF
Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography 被引量:14
3
作者 徐冬 胡祥云 +1 位作者 单春玲 李睿恒 《Applied Geophysics》 SCIE CSCD 2016年第1期1-12,217,共13页
The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated cor... The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated correlation is still poor and inadequate.Thus,in this study,we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography(TLERT) in November 2013 and August 2014.We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body.Combined with borehole data,inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock.Preferential flow pathways attributed to fracture zones and fissures were also delineated.In addition,we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock,probably causing the weakly weathered layer to gradually soften and erode,eventually leading to a landslide.Clearly,TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction. 展开更多
关键词 time-lapse electrical resistivity tomography LANDSLIDE HYDROGEOPHYSICS monitoring preferential flow
在线阅读 下载PDF
A Fully‑Printed Wearable Bandage‑Based Electrochemical Sensor with pH Correction for Wound Infection Monitoring
4
作者 Kanyawee Kaewpradub Kornautchaya Veenuttranon +2 位作者 Husanai Jantapaso Pimonsri Mittraparp‑arthorn Itthipon Jeerapan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期355-375,共21页
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ... Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes. 展开更多
关键词 PYOCYANIN BANDAGES Wound monitoring Biosensor Wearable device
在线阅读 下载PDF
Low‑Temperature Fabrication of Stable Black‑Phase CsPbI_(3) Perovskite Flexible Photodetectors Toward Wearable Health Monitoring
5
作者 Yingjie Zhao Yicheng Sun +8 位作者 Chaoxin Pei Xing Yin Xinyi Li Yi Hao Mengru Zhang Meng Yuan Jinglin Zhou Yu Chen Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期232-245,共14页
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh... Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices. 展开更多
关键词 In situ hydrolyzation Low-temperature processing All-inorganic perovskite Flexible photodetectors Health monitoring
在线阅读 下载PDF
Characterizing large deformation of soft rock tunnel using microseismic monitoring and numerical simulation 被引量:1
6
作者 Yuepeng Sun Nuwen Xu +4 位作者 Peiwei Xiao Zhiqiang Sun Huailiang Li Jun Liu Biao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期309-322,共14页
Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the... Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects. 展开更多
关键词 Soft rock tunnel MS monitoring Progressive failure characteristic Excavation damage zone Failure mechanism
在线阅读 下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
7
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
在线阅读 下载PDF
Radioprotection and Medical Monitoring in Health Facilities in Douala, Cameroon
8
作者 Owona Manga Léon Jules Mballa Amougou Jean Claude +4 位作者 Mbede Maggy Tchicaya Aimé François Giegui Chimène Pulchérie Manga Romaine Carine Mouelle Sone Albert 《Occupational Diseases and Environmental Medicine》 2025年第1期17-29,共13页
Introduction: The use of radioactive radiations in healthcare facilities must comply with radioprotection safety rules in order to avoid threatening the health of workers and patients. This study aimed to assess the w... Introduction: The use of radioactive radiations in healthcare facilities must comply with radioprotection safety rules in order to avoid threatening the health of workers and patients. This study aimed to assess the working conditions, the protective measures and the medical monitoring of workers directly involved in X-ray work at hospitals in Douala, Cameroon. Materials and Methods: A descriptive cross-sectional study was carried out during the 1st quarter of 2018, across various state and private health facilities of the city of Douala. Sampling was non-random, based on convenience and all the willing participants that fulfilled the inclusion criteria were enrolled. Quantitative analyses were conducted using EPI INFO 7.0 software and the results were presented in both univariate and bivariate forms. Results: The sample consisted of 56 men and 31 women with a mean age of 34.75 ± 8.77 years. X-ray technicians were over-represented (41.38%). Day/night shift work was the main work pattern (68.96%). The distribution of work zones A&B was known by 87.5% of the participants. Hazard warning signs were effective in work zones A and B (75.86%), and the walls of the premises were also reinforced in these work zones (88.51%), but the use of radiation dosimeters was rare (9.20%). Radiation aprons (94.30%) and hand-held dosimeters (63.20%) were the most commonly used personal protective equipment. The majority of the participants did not benefit from medical follow-up by an occupational health specialist (62.1%). Conclusion: The implementation of radiation protection measures remains a significant concern in Douala based health facilities, and requires stricter administrative controls and sanctions to prevent serious health consequences for exposed staff. 展开更多
关键词 Ionizing Radiation HOSPITAL Radiation Protection Medical monitoring Douala
在线阅读 下载PDF
Web-Based Platform and Remote Sensing Technology for Monitoring Mangrove Ecosystem
9
作者 Evelyn Anthony Rodriguez John Edgar Sualog Anthony +2 位作者 Randy Anthony Quitain Wilma Cledera Delos Santos Ernesto Jr. Benda Rodriguez 《Open Journal of Ecology》 2025年第1期1-10,共10页
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell... Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world. 展开更多
关键词 Mangrove Ecosystems monitoring Remote Sensing Web-Based Platform
在线阅读 下载PDF
Strengthening Water Quality Monitoring Following Cyclones Idai and Kenneth in Mozambique
10
作者 Anu Rajasingham Travis Brown +10 位作者 Arminda Macuamule Felisberto Lúcio Garbaldino Zeca Jorge Matola Didier Monteiro Tomohiko Morita Alexia Couture Albert Reichert Pierre-Yves Oger Chris Cormency Thomas Handzel 《Journal of Water Resource and Protection》 2025年第2期96-107,共12页
In early 2019, Mozambique was struck by two cyclones, Cyclone Idai in Sofala Province and Cyclone Kenneth in Cabo Delgado Province. Outbreaks of cholera were declared soon after both cyclones in Beira and Pemba cities... In early 2019, Mozambique was struck by two cyclones, Cyclone Idai in Sofala Province and Cyclone Kenneth in Cabo Delgado Province. Outbreaks of cholera were declared soon after both cyclones in Beira and Pemba cities. In response to the emergencies and outbreaks, government and humanitarian partners collaborated to create a mobile phone based water quality monitoring program to monitor daily free residual chlorine (FRC) levels in the piped network in both locations and at accommodation centers created for internally displaced persons in Beira. Overall, 87% of the 1080 samples from the piped network in Beira had detectable FRC and at accommodation centers, 73% of the 179 samples collected had detectable FRC. In Pemba, 64% of the 114 total samples collected had detectable FRC. Data from the water quality monitoring programs allowed for the identification of trends that helped increase the effectiveness of the response, including identifying areas where chlorination could be strengthened with the installation of booster chlorinators, issues with the consistency of daily chlorine treatment, and sites where water availability was limited. The water quality monitoring activities were a result of productive collaboration and could be replicated after similar emergencies in cholera endemic areas to prevent and control outbreaks. 展开更多
关键词 Water Quality monitoring Emergency Response Cholera Outbreak Response CHLORINATION
在线阅读 下载PDF
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
11
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 Structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Research on Monitoring and Intervention Systems for College Students’ Mental Health Based on Artificial Intelligence
12
作者 Meng Lyu 《Journal of Contemporary Educational Research》 2025年第1期116-122,共7页
Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective i... Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective intervention of college students’mental health status.Therefore,this article constructs an artificial intelligence-based psychological health and intervention system for college students.Firstly,this article obtains psychological health testing data of college students through online platforms or on-campus system design,distribution of questionnaires,feedback from close contacts of students,and internal campus resources.Then,the architecture of a mental health monitoring system is designed.Its overall architecture includes a data collection layer,a data processing layer,a decision tree algorithm layer,and an evaluation display layer.The system uses the C4.5 decision tree algorithm to calculate the information gain of the processed sample data,selects the attribute with the maximum value,and constructs a decision tree structure model to evaluate students’mental health.Finally,this article studies the evaluation of students’mental health status by combining multidimensional information such as the SCL-90 scale,self-assessment scale,and student behavior data.Experimental data shows that the system can effectively identify students’mental health problems and provide precise intervention measures based on their situation,with high accuracy and practicality. 展开更多
关键词 Artificial intelligence Psychological health monitoring College students Dynamic monitoring Decision tree algorithm
在线阅读 下载PDF
Assessment of Optimal Use, Maintenance, Repair and Calibration of Radiation Monitoring Instruments in Nigeria
13
作者 Samuel Mofolorunsho Oyeyemi Olumide Olaife Akerele +5 位作者 Sunday Ufuoma Obarhua Francis Adole Agada Wasiu Kofoworola Ayuba Helen Enikpi Alakiu David Olakanmi Olaniyi Ethel Ebere Ofoegbu 《World Journal of Nuclear Science and Technology》 2025年第1期1-16,共16页
The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and... The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria. 展开更多
关键词 Radiation monitoring Instruments Detectors CALIBRATION Radiation Safety Officers PackEye Radionuclide Identifinder Personal Radiation Detectors
在线阅读 下载PDF
Remote home weight monitoring and office visits in newborns:a pilot randomized controlled trial
14
作者 Anirudha Das Chionye Ossai +4 位作者 Nikita Akkala Colleen CSchelzig Wadie Shabab Kimberly Churbock Kari Gali 《World Journal of Pediatrics》 2025年第1期113-116,共4页
The American Academy of Pediatrics(AAP)recommends two well-baby office visits for healthy newborns after discharge from the hospital:one at 3-5 days of life and another at 1 month of age[1].Although guidelines for a n... The American Academy of Pediatrics(AAP)recommends two well-baby office visits for healthy newborns after discharge from the hospital:one at 3-5 days of life and another at 1 month of age[1].Although guidelines for a normal range of weight loss after birth have already been established,following the nomograms to ensure that infants are not losing weight abnormally requires close monitoring[2,3].Additional follow-up weight-check visits,often done when inadequate weight gain is suspected,can be costly and time-consuming for parents,increase the baby's exposure to infections,and divert clinic resources away from other patients. 展开更多
关键词 weight monitoring well baby visits NOMOGRAMS parental cost office visits infant weight loss remote monitoring NEWBORNS
原文传递
A novel wearable device integrating ECG and PCG for cardiac health monitoring
15
作者 Junbin Zang Qi An +3 位作者 Bo Li Zhidong Zhang Libo Gao Chenyang Xue 《Microsystems & Nanoengineering》 2025年第1期173-185,共13页
The alarming prevalence and mortality rates associated with cardiovascular diseases have emphasized the urgency for innovative detection solutions.Traditional methods,often costly,bulky,and prone to subjectivity,fall ... The alarming prevalence and mortality rates associated with cardiovascular diseases have emphasized the urgency for innovative detection solutions.Traditional methods,often costly,bulky,and prone to subjectivity,fall short of meeting the need for daily monitoring.Digital and portable wearable monitoring devices have emerged as a promising research frontier.This study introduces a wearable system that integrates electrocardiogram(ECG)and phonocardiogram(PCG)detection.By ingeniously pairing a contact-type PZT heart sound sensing structure with ECG electrodes,the system achieves the acquisition of high-quality ECG and PCG signals.Notably,the signal-to-noise ratios(SNR)for ECG and PCG signals were measured at 44.13 dB and 30.04 dB,respectively,demonstrating the system’s remarkable stability across varying conditions.These collected signals were subsequently utilized to derive crucial feature values,including electromechanical delay(EMD),left ventricular ejection time(LVET),and pre-ejection period(PEP).Furthermore,we collected a dataset comprising 40 cases of ECG and PCG signals,enabling a comparative analysis of these three feature parameters between healthy individuals and coronary heart disease patients.This research endeavor presents a significant step forward in the realm of early,non-invasive,and intelligent monitoring of cardiovascular diseases,offering hope for earlier detection and more effective management of these life-threatening conditions. 展开更多
关键词 wearable device portable wearable monitoring devices PHONOCARDIOGRAM wearable system electromechanical delay cardiovascular diseases ELECTROCARDIOGRAM cardiac health monitoring
原文传递
Laboratory evaluation of a low-cost micro electro-mechanical systems sensor for inclination and acceleration monitoring
16
作者 Antonis Paganis Vassiliki NGeorgiannou +1 位作者 Xenofon Lignos Reina El Dahr 《Deep Underground Science and Engineering》 2025年第1期46-54,共9页
In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i... In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions. 展开更多
关键词 field monitoring Kalman filter laboratory evaluation micro electro mechanical systems(MEMS) monitoring node shaking table
在线阅读 下载PDF
Development of an optimization model for a monitoring point in tunnel stress deduction using a machine learning algorithm
17
作者 Xuyan Tan Weizhong Chen +1 位作者 Luyu Wang Wei Ye 《Deep Underground Science and Engineering》 2025年第1期35-45,共11页
Monitoring of the mechanical behavior of underwater shield tunnels is vital for ensuring their long-term structural stability.Typically determined by empirical or semi-empirical methods,the limited number of monitorin... Monitoring of the mechanical behavior of underwater shield tunnels is vital for ensuring their long-term structural stability.Typically determined by empirical or semi-empirical methods,the limited number of monitoring points and coarse monitoring schemes pose huge challenges in terms of capturing the complete mechanical state of the entire structure.Therefore,with the aim of optimizing the monitoring scheme,this study introduces a spatial deduction model for the stress distribution of the overall structure using a machine learning algorithm.Initially,clustering experiments were performed on a numerical data set to determine the typical positions of structural mechanical responses.Subsequently,supervised learning methods were applied to derive the data information across the entire surface by using the data from these typical positions,which allows flexibility in the number and combinations of these points.According to the evaluation results of the model under various conditions,the optimized number of monitoring points and their locations are determined.Experimental findings suggest that an excessive number of monitoring points results in information redundancy,thus diminishing the deduction capability.The primary positions for monitoring points are determined as the spandrel and hance of the tunnel structure,with the arch crown and inch arch serving as additional positions to enhance the monitoring network.Compared with common methods,the proposed model shows significantly improved characterization abilities,establishing its reliability for optimizing the monitoring scheme. 展开更多
关键词 machine learning monitoring OPTIMIZATION simulation TUNNEL
在线阅读 下载PDF
Conception and first results of the Russian National System of Background Permafrost Monitoring
18
作者 Nikita E.DEMIDOV Oleg A.ANISIMOV +10 位作者 Mikhail A.ANISIMOV Alexander L.BORISIK Valerian E.GOLAVSKII Maria A.GUSAKOVA Alina V.GUZEVA Alexander S.MAKAROV Anton P.MOROZOV Irina Yu.SOLOVYANOVA Alexander A.STEPANETS Yuriy V.UGRUMOV Daria K.ZAITSEVA 《Advances in Polar Science》 2025年第1期51-60,共10页
In 2022,the Russian Federation commenced development of a national system for permafrost monitoring.The conceptual design of this system reflects three objectives:(1)to collect data on the impact of climate change on ... In 2022,the Russian Federation commenced development of a national system for permafrost monitoring.The conceptual design of this system reflects three objectives:(1)to collect data on the impact of climate change on permafrost,(2)to provide data for evaluation of climate-permafrost feedback,and(3)to provide input to a model-based permafrost data assimilation system.It is intended that the system will eventually consist of 30 active layer monitoring sites and 140 boreholes situated near existing weather stations.As of October 2024,the network comprised 38 sites spanning from the High Arctic islands to the Altai Mountains and across western and eastern Siberia.Among these sites,the lowest recorded temperature at the depth of zero annual amplitude is-11.3℃and the minimum active layer thickness is 0.3 m,as observed on the New Siberian Archipelago.In most boreholes,a positive vertical temperature gradient exists below the depth of zero annual amplitude,indicative of ongoing warming of the upper permafrost layer attributable to climate change.The annual maximum active layer thickness is observed in September with only two exceptions:at the High Arctic sites on Franz Josef Land and Wiese Island and in the low-latitude Sayan Mountain region,where maximum thawing is observed at the end of August.Talik was found in boreholes in Salekhard and Altai where the upper boundary of the permafrost is located at depth of 6-10 m. 展开更多
关键词 monitoring climate change weather station PERMAFROST active layer
在线阅读 下载PDF
Multi-Person Respiration Monitoring Leveraging Commodity Wi-Fi Devices
19
作者 En-Ze Yi Kai Niu +3 位作者 Fu-Sang Zhang Rui-Yang Gao Jun Luo Da-Qing Zhang 《Journal of Computer Science & Technology》 2025年第1期229-251,共23页
Monitoring respiration is an important component of personal health care.Though recent developments in Wi-Fi sensing offer a potential tool to achieve contact-free respiration monitoring,existing proposals for Wi-Fi-b... Monitoring respiration is an important component of personal health care.Though recent developments in Wi-Fi sensing offer a potential tool to achieve contact-free respiration monitoring,existing proposals for Wi-Fi-based multi-person respiration sensing mainly extract individual's respiration rate in the frequency domain using the fast Fourier transform(FFT)or multiple signal classification(MUSIC)method,leading to the following limitations:1)largely ineffective in recovering breaths of multiple persons from received mixed signals and in differentiating individual breaths,2)unable to acquire the time-varying respiration pattern when the subject has respiratory abnormity,such as apnea and changing respiration rates,and 3)difficult to identify the real number of subjects when multiple subjects share the same or similar respiration rates.To address these issues,we propose Wi-Fi-enabled MUlti-person SEnsing(WiMUSE)as a signal processing pipeline to perform respiration monitoring for multiple persons simultaneously.Essentially,as a pioneering time domain approach,WiMUSE models the mixed signals of multi-person respiration as a linear superposition of multiple waveforms,so as to form a blind source separation(BSS)problem.The effective separation of the signal sources(respiratory waveforms)further enables us to quantify the differences in the respiratory waveform patterns of multiple subjects,and thus to identify the number of subjects along with their respective respiration waveforms.We implement WiMUSE on commodity Wi-Fi devices and conduct extensive experiments to demonstrate that,compared with the approaches based on the FFT or MUSIC method,90%error of respiration rate can be reduced by more than 60%. 展开更多
关键词 respiration monitoring multi-person sensing Wi-Fi sensing
原文传递
Railway Slope Monitoring Based on Dual-Parameter FBG Sensor
20
作者 Hongbin XU Weiwei WANG +3 位作者 Feng LI Yanliang DU Hongliang TU Chuanrui GUO 《Photonic Sensors》 2025年第1期47-60,共14页
A large number of slopes appear along the line during railway construction,which will pose a threat to railway safety operation.Slope monitoring plays an important role in ensuring the safety of railway operation.Aimi... A large number of slopes appear along the line during railway construction,which will pose a threat to railway safety operation.Slope monitoring plays an important role in ensuring the safety of railway operation.Aiming at the difficulties of sensor multiplexing,low accuracy,and large disturbance by trains,this paper proposes a railway slope monitoring method based on integrated fusion detection of inclination and vibration.Instability and failure characteristics of the K3 slope in Shuohuang Railway and dynamic characteristics under the excitation of the train load are analyzed by the finite element method(FEM)analysis.Based on the above analysis,a slope monitoring system is established utilizing the self-developed dual-parameter fiber Bragg grating(FBG)sensor.The monitoring data of the past four years show that the slope is in a relatively stable state at present.The monitoring data are consistent with the results of the FEM.The feasibility of the damage identification method based on inclination and vibration characteristics is verified,which provides a new method for railway slope monitoring. 展开更多
关键词 Fiber Bragg grating railway slope monitoring INCLINATION VIBRATION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部