期刊文献+
共找到56,420篇文章
< 1 2 250 >
每页显示 20 50 100
Recent progress of Rh-based three-way catalysts 被引量:1
1
作者 Ruize Jiang Huilin Wang +6 位作者 Li Liu Baokang Geng Xiang Chu Yi Shi Xiao Wang Shuyan Song Hongjie Zhang 《Smart Molecules》 2024年第2期85-103,共19页
Three-way catalysts are widely used to control criterion pollutant emissions fromthe increasing gasoline engines.With the stringent requirements of automotivepollutant emission standards in various countries,Rh has be... Three-way catalysts are widely used to control criterion pollutant emissions fromthe increasing gasoline engines.With the stringent requirements of automotivepollutant emission standards in various countries,Rh has become an irreplaceablecomponent of three-way catalysts due to its superior NOx elimination,high N2selectivity,and simultaneous elimination of CO and hydrocarbons.In this review,we systematically review the recent development of Rh-based three-way catalystsin terms of potential supports and effective active center construction strategies.We further summarize the key role of Rh metal in the three-way catalytic mechanismand reaction kinetics.Finally,we conclude the current challenges and futureopportunities facing Rh-based catalysts.It is believed that based on the deep understandingof Rh-based three-way catalysts,the design of Rh-based catalysts withgood low-temperature catalytic performance and low cost is expected to be realizedin the future. 展开更多
关键词 mechanism and kinetics rhodium(Rh)catalysts structure-activity relationships three-way catalysts
在线阅读 下载PDF
Quaternary Oxide of Cerium, Terbium, Praseodymium and Zirconium for Three-Way Catalysts 被引量:3
2
作者 康振晋 康振川 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期314-319,共6页
Oxygen storage-capacity (OSC), oxygen buffer capacity (OBC), X-my diffraction and electron diffraction pattern, high resolution electron microscopy were used to study the quaternary oxides, i .e., of Ce, Tb, Pr an... Oxygen storage-capacity (OSC), oxygen buffer capacity (OBC), X-my diffraction and electron diffraction pattern, high resolution electron microscopy were used to study the quaternary oxides, i .e., of Ce, Tb, Pr and Zr. (Ce0.6 Tb0.2Zr0.2O2- δ and Ce0.6Pr0.2Zr0.2O2-δ ). OSC and OBC data indicate that these oxides have very good oxygen transfer capacity (OTC) and their pseudo-solid solutions exhibit fluorite-type structure. These oxides may act as a good candidate for three-way catalysts (TWC). 展开更多
关键词 oxygen storage capacity oxygen buffer capacity three-way catalysts rare earths
在线阅读 下载PDF
Influence of Ce_(0.35)Zr_(0.55)Y_(0.10) Solid Solution on Performance of Pt-Rh Three-Way Catalysts 被引量:1
3
作者 郭家秀 袁书华 +3 位作者 龚茂初 沈美 钟俊波 陈耀强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第2期179-183,共5页
Ce0.35Zr0.55Y0. 10 solid solution was prepared by co-precipitation technique and characterized by specific surface area measurements (BET) and X-ray diffraction (XRD). Ce0.35Zr0.55Y0.10 was used to prepare low Pt-... Ce0.35Zr0.55Y0. 10 solid solution was prepared by co-precipitation technique and characterized by specific surface area measurements (BET) and X-ray diffraction (XRD). Ce0.35Zr0.55Y0.10 was used to prepare low Pt-Rh threeway catalyst (TWC), and its influence on the performance of TWC was investigated. The results revealed that Ce0.35 Zr0.55Y0.10 had a cubic structure similar to Ce0.50Zr0.50O2 and its specific surface area can maintain higher than Ce0.50 Zr0.50O2 after 1000 ℃ calcination for 5 h. Being hydrothermal aged at 1000 ℃ for 5 h, the catalyst containing Ce0.35 Zr0.55Y0.10 still exhibited higher conversion of C3H8, CO and NO and lower light-off temperature in comparison with Ce0.50Zr0.50O2 TWC. 展开更多
关键词 low precious metal three-way catalysts rare earths
在线阅读 下载PDF
Promoter of (Ce-Zr)O_2 Solid Solution Modified by Praseodymia in Three-Way Catalysts 被引量:1
4
作者 汪文栋 林培琰 +4 位作者 孟明 伏义路 胡天斗 谢亚宁 刘涛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第4期430-435,共6页
The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction ... The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction features of the promoters were measured by temperature programmed reduction (TPR) of H 2 to access the potential for the promoters containing praseodymia as oxygen storage component in three way catalyst. The (Pr Zr)O 2 cubic solid solution is formed at high temperature up to 800 ℃, which makes it more reducible than the (Ce Zr)O 2 solid solution. For the (Pr Ce Zr)O 2 samples, the ternary solid solution plays an important role in the reduction process. The performance of the three way catalysts with fully formulated Pt, Pd and Rh is proceeded by using both light off temperature under a stoichiometric gas composition and the conversion of CO, C 3H 6 and NO under changing air/fuel ratio at a constant reaction temperature 400 ℃ . The results indicate that a small amount of praseodymia doping into (Ce Zr)O 2 favors the light off temperature of C 3H 6 and NO, and all the catalysts containing praseodymia obviously exhibits enhanced width of S value for NO conversion at lean region ( S ≥1.00). 展开更多
关键词 catalytic chemistry PRASEODYMIUM (Ce Zr)O 2 solid solution three way catalysts rare earths
在线阅读 下载PDF
Effect of Sulfur on the Performance of Three-Way Catalysts
5
作者 Li Yang He Zhenfu +2 位作者 Shao Qian Shen Ningyuan Jing Zhenhua(SINOPEC Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2003年第3期53-57,共5页
Sulfur content is one of the fuel properties to be monitored. Sulfur dioxide, the major product derived from organic sulfur compounds in the exhaust gas emissions, is a poison to the three-way catalysts (TWC). A gas m... Sulfur content is one of the fuel properties to be monitored. Sulfur dioxide, the major product derived from organic sulfur compounds in the exhaust gas emissions, is a poison to the three-way catalysts (TWC). A gas mixture was applied to simulate the exhaust gases used in the TWC aging procedure tests. Two types of the TWC, REX-IIC and REX-IID, were tested in this study. The performance of both TWC's before and after the 100-hour sulfur aging program was compared. It was concluded that the Pt component in the TWC was apt to be poisoned by sulfur much easily than Rh. The performance of the REX-IID catalyst was generally better than that of the REX-IIC catalyst. 展开更多
关键词 three-way catalyst simulated aging performance tests
在线阅读 下载PDF
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
6
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
在线阅读 下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting
7
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
8
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
9
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Size-dependent strong metal-support interaction modulation of Pt/CoFe_(2)O_(4) catalysts
10
作者 Yangyang Li Jingyi Yang +1 位作者 Botao Qiao Tao Zhang 《Chinese Journal of Catalysis》 2025年第2期292-302,共11页
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance... Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs. 展开更多
关键词 Strongmetal-support interaction Single-atom catalyst Pseudo-single-atom catalyst Size dependence Pt/CoFe_(2)O_(4)catalyst
在线阅读 下载PDF
Isomorphous substitution in CaAl-hydrotalcite to construct high density single-atom catalysts for selective N-Heteroarene hydrogenation
11
作者 Jieting He Yu Liang +4 位作者 Binbin Zhao Lei Liu Qian He Dingsheng Wang Jinxiang Dong 《Chinese Journal of Catalysis》 2025年第3期353-362,共10页
Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such ... Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such supports has been challenging.Herein,we report an innovative strategy for the fabrication of high-density single-atoms(Rh,Ru,Pd)catalysts on CaAl-layered double hydroxides(CaAl-LDH)via isomorphous substitution.The Rh species have occupied Ca^(2+)vacancies within CaAl-LDH laminate by ion-exchange,facilitating a substantial loading of isolated Rh single-atoms.Such catalysts displayed superior performance in the selective hydrogenation to quinoline,pivotal for liquid organic hydrogen storage,and the universality for the hydrogenation of N-heterocyclic aromatic hydrocarbons was also verified.Combining the experimental results and density functional theory calculations,the pathway of quinoline hydrogenation over Rh1CaAl-LDH was proposed.This synthetic strategy marks a significant advancement in the field of single-atom catalysts,expanding their horizons in green chemical processes. 展开更多
关键词 Isomorphous substitution High-loading Single-atom catalyst Selective hydrogenation
在线阅读 下载PDF
Oxidative steam reforming of HDPE pyrolysis volatiles on Ni catalysts:Effect of the support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))on the catalyst performance
12
作者 Mayra Alejandra Suarez Laura Santamaria +4 位作者 Gartzen Lopez Enara Fernandez Martin Olazar Maider Amutio Maite Artetxe 《Chinese Journal of Catalysis》 2025年第2期149-162,共14页
High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic p... High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic pyrolysis was conducted at 550℃ and the volatiles formed were fed in-line to the oxidative steam reforming step(space-time 3.12 gcat min gHDPE−1;ER=0.2 and steam/plastic=3)operating at 700℃.The influence Ni based reforming catalyst support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))have on HDPE pyrolysis volatiles conversion and H_(2) production was assessed.The catalysts were prepared by the wet impregnation and they were characterized by means of N_(2) adsorption-desorption,X-ray fluorescence,temperature-programmed reduction and X-ray powder diffraction.A preliminary study on coke deposition and the deterioration of catalysts properties was carried out,by analyzing the tested catalysts through temperature programmed oxidation of coke,transmission electron microscopy,and N_(2) adsorption-desorption.Among the supports tested,ZrO_(2) showed the best performance,attaining conversion and H_(2) production values of 92.2% and 12.8 wt%,respectively.Concerning promoted catalysts,they led to similar conversion values(around 90%),but significant differences were observed in H_(2) production.Thus,higher H_(2) productions were obtained on the Ni/La_(2)O_(3)-Al_(2)O_(3) catalyst(12.1 wt%)than on CeO_(2) promoted catalysts due to La_(2)O_(3) capability for enhancing water adsorption on the catalyst surface. 展开更多
关键词 PLASTIC PYROLYSIS Oxidative steam reforming Ni catalyst Hydrogen
在线阅读 下载PDF
Densely populated single-atom catalysts for boosting hydrogen generation from formic acid
13
作者 Xiaogeng Zhao Junmin Wang +6 位作者 Dongnuan Zhang Yunhui Hao Xingmian Zhang Junna Feng Hong Su Cheng Feng Chun Wang 《Carbon Energy》 2025年第1期64-75,共12页
The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coup... The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coupled with hightemperature calcination conditions,limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts.Herein,we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor,effectively preventing the formation of metal nanoparticles even with up to 6.377%cobalt loading.This catalyst showed a high H_(2) production rate of 778mLgcat^(−1) h^(−1) when used in the dehydrogenation reaction of formic acid.In addition to the high density of the active site,a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst. 展开更多
关键词 COBALT DEHYDROGENATION formic acid polyfurfuryl alcohol single-atom catalyst
在线阅读 下载PDF
Research progress of catalysts for direct coal liquefaction
14
作者 Wei Song Penggao Liu +4 位作者 Xinyue Chen Ting Wang Chunrong He Rui Hao Kaiyu Liu 《Journal of Energy Chemistry》 2025年第1期481-497,共17页
Coal direct liquefaction technology is a crucial contemporary coal chemical technology for efficient and clean use of coal resources. The development of direct coal liquefaction technology and the promotion of alterna... Coal direct liquefaction technology is a crucial contemporary coal chemical technology for efficient and clean use of coal resources. The development of direct coal liquefaction technology and the promotion of alternative energy sources are important measures to guarantee energy security and economic security. However, several challenges need to be addressed, including low conversion rate, inadequate oil yield, significant coking, demanding reaction conditions, and high energy consumption. Extensive research has been conducted on these issues, but further exploration is required in certain aspects such as pyrolysis of macromolecules during the liquefaction process, hydrogen activation, catalysts' performance and stability, solvent hydrogenation, as well as interactions between free radicals to understand their mechanisms better. This paper presents a comprehensive analysis of the design strategy for efficient catalysts in coal liquefaction, encompassing the mechanism of coal liquefaction, catalyst construction,and enhancement of catalytic conversion efficiency. It serves as a comprehensive guide for further research endeavors. Firstly, it systematically summarizes the conversion mechanism of direct coal liquefaction, provides detailed descriptions of various catalyst design strategies, and especially outlines the catalytic mechanism. Furthermore, it addresses the challenges and prospects associated with constructing efficient catalysts for direct coal liquefaction based on an understanding of their action mechanisms. 展开更多
关键词 Direct coal liquefaction catalysts Mechanismof action Solvent hydrogenation
在线阅读 下载PDF
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells
15
作者 Lei Zhang Yuchen Dong +6 位作者 Lubing Li Yuchuan Shi Yan Zhang Liting Wei Chung-Li Dong Zhiqun Lin Jinzhan Su 《Nano-Micro Letters》 2025年第4期275-289,共15页
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a... The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices. 展开更多
关键词 Doping-adsorption-pyrolysis Dual-atom catalysts Oxygen reduction reaction Fuel cells
在线阅读 下载PDF
Advances in metal-free carbon catalysts for acetylene hydrochlorination:From heteroatom doping to intrinsic defects over the past decade
16
作者 Shuhao Wei Guojun Lan +3 位作者 Yiyang Qiu Di Lin Wei Kong Ying Li 《Chinese Journal of Catalysis》 2025年第3期8-43,共36页
The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally... The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally hazardous mercury-based systems for the coal-based PVC industry.Within a decade of development,the catalytic performance of carbon catalysts has been improved greatly and even shows superiorities over metal catalysts in some cases,which have demonstrated great potential as sustainable alternatives to mercury catalysts.This review provides a comprehensive summary of the recent advancements in carbon catalysts for acetylene hydrochlorination.It encompasses a wide range of aspects,including the identification of active sites from heteroatom doping to intrinsic carbon defects,the various synthetic strategies employed,the reaction and deactivation mechanisms of carbon catalysts,and the current insights into the key challenges that are encountered on the journey from laboratory research to scalable commercialization within the field of carbon catalysts.The review offers foundational insights and practical guidelines for designing green carbon catalysts systems,not only for acetylene hydrochlorination but also for other heterogeneous catalytic reactions. 展开更多
关键词 METAL-FREE Carbon catalyst Acetylene hydrochlorination Heteroatom doping Defect engineering
在线阅读 下载PDF
Synthesis of 5-hydroxymethylfurfural and its oxidation derivatives by immobilized catalysts:An efficient green sustainable technology
17
作者 Yao Chen Jun Ge 《Chinese Journal of Catalysis》 2025年第4期5-24,共20页
5-Hydroxymethylfurfural(HMF)and its oxidation derivatives have emerged as a bridge between biomass resources and the future energy industry.These renewable biomass resources can be transformed into a variety of value-... 5-Hydroxymethylfurfural(HMF)and its oxidation derivatives have emerged as a bridge between biomass resources and the future energy industry.These renewable biomass resources can be transformed into a variety of value-added chemicals,thereby addressing the challenges posed by diminishing fossil fuel reserves and environmental concerns.The immobilization of catalysts represents an innovative method for the sustainable and efficient synthesis of HMF and its oxidation derivatives.This method not only enhances the yield and selectivity of the products but also allows for the optimization of the catalytic performance of immobilized catalysts through the strategic design of their supports.In this review,we provide an overview of the recent advancements in the technology of immobilized catalyst and its application in the synthesis of HMF and its oxidation derivatives,with a particular focus on the preparation and catalytic characteristics of these immobilized catalysts.Furthermore,we discuss potential future directions for the development of immobilized catalysts,including the preparation of high-performance immobilized catalysts,the exploration of their growth and catalytic mechanisms,and the economic implications of raw material utilization.This area of research presents both significant promise and considerable challenges. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL Oxidized derivatives IMMOBILIZATION Immobilized catalyst Catalytic property
在线阅读 下载PDF
Synthesis and Electrochemical Performance of Single-Atom Catalysts Derived from Metal-Organic Frameworks
18
作者 Yu Zhang Xiaoxiao Su +3 位作者 Xinmei Du Lan Wei Hao Zhang Ling Jiang 《Chinese Journal of Chemical Physics》 2025年第2期125-139,I0039,共16页
Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined acti... Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined active sites and high loadings under precise control has become a hotly debated topic in scientific research.Metal-organic frameworks(MOFs),with their exceptional properties such as ultrahigh specific surface areas,precisely controllable structural de-signs,and highly flexible functional cus-tomization capabilities,are regarded as one of the ideal matrices for supporting and sta-bilizing SACs.This review provides an in-sightful overview of the diverse preparation strategies for MOFs-derived SACs.It comprehen-sively analyzes the unique advantages and challenges of each method in achieving efficient synthesis of SACs,emphasizing the crucial role of optimized processes in unlocking the antici-pated performance of SACs.Furthermore,this review delves into a series of advanced charac-terization techniques,including aberration-corrected scanning transmission electron mi-croscopy(AC-STEM),electron energy loss spectroscopy(EELS),X-ray absorption spec-troscopy(XAS),and infrared absorption spectroscopy(IRAS),offering valuable insights into the atomic-scale fine structures and properties of SACs,significantly advancing the under-standing of SAC mechanisms.Moreover,this review focuses on exploring the potential appli-cations of MOFs-derived SACs in electrocatalysis frontier fields.This comprehensive exami-nation lays a solid theoretical foundation and provides a directional guidance for the rational design and controllable synthesis of high-performance MOFs-derived SACs. 展开更多
关键词 Single-atom catalysts Metal-organic frameworks High-temperature pyrolysis Characterization methods Electrocatalysis applications
在线阅读 下载PDF
Chiral supramolecular catalysts of helical nanoribbon:More twist,higher enantioselectivity
19
作者 Cong Gao Zijian Zhu +4 位作者 Siwei Li Zheng Xi Qingqing Sun Jie Han Rong Guo 《Chinese Chemical Letters》 2025年第3期259-262,共4页
Rational tuning of chiral nanostructures of supramolecular assemblies as catalysts and investigating their chiral morphology-enantioselectivity dependence is rarely reported. Herein, we report a series of supramolecul... Rational tuning of chiral nanostructures of supramolecular assemblies as catalysts and investigating their chiral morphology-enantioselectivity dependence is rarely reported. Herein, we report a series of supramolecular M/P-helical nanoribbons(HNs) assembled from the chiral L/D-glutamate-based amphiphiles(L/D-Glu C16) and Cu(Ⅱ) ions, with their helical screw pitches adjusted from 217 nm to 104 nm through the facile regulation of their water/organic solvent assembly environment. They were then used as ideal models to reveal the chiral morphology-enantioselectivity relationship by catalyzing the asymmetric Diels-Alder reaction. Better enantioselectivity was achieved with more twist morphology. Experimental evidences of stronger chiral transfer effect from the supramolecular HNs with more twist to the aza-chalcone as reactant were obtained to understand such dependence. Our study demonstrates a new perspective for designing supramolecular catalysts with higher enantioselectivity. 展开更多
关键词 Chiral supramolecular catalyst Helical nanoribbon Screw pitch ENANTIOSELECTIVITY Diels-Alder reaction
原文传递
Constant-potential simulation of electrocatalytic N_(2) reduction over atomic metal-N-graphene catalysts
20
作者 Sanmei Wang Yong Zhou +3 位作者 Hengxin Fang Chunyang Nie Chang Q Sun Biao Wang 《Chinese Chemical Letters》 2025年第3期439-443,共5页
Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required... Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism. 展开更多
关键词 N_(2) reduction Single-atom catalysts Constant potential GRAPHENE DFT
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部