期刊文献+
共找到15,884篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure effect of mechanical and cracking behaviors on brittle rocks using image-based fast Fourier transform method
1
作者 Mingyao Li Lei Peng +1 位作者 Dejun Liu Jianping Zuo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期399-413,共15页
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan... The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. 展开更多
关键词 Rock microstructure Cracking process Brittle rocks Fast Fourier transform(FFT) Digital image processing(DIP)
在线阅读 下载PDF
Training image analysis for three-dimensional reconstruction of porous media
2
作者 滕奇志 杨丹 +2 位作者 徐智 李征骥 何小海 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期415-421,共7页
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop... In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics. 展开更多
关键词 three-dimensional reconstruction training image stationarity porous media multiple-point statistics
在线阅读 下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
3
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images transformER dense small object detection
在线阅读 下载PDF
Numerical design of transverse gradient coil with transformed magnetic gradient field over an effective imaging area
4
作者 Chaoqun Niu Hongyi Qu 《Magnetic Resonance Letters》 2025年第1期40-51,共12页
Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration... Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration of the safety and comfort of the patient,the mechanical stability,acoustic noise and peripheral nerve stimulation(PNS)are also need to be concerned for practical use.In our previous work,a high-efficiency whole-body gradient coil set with a hybrid cylindrical-planar structure has been presented,which offers significantly improved coil performances.In this work,we propose to design this transverse gradient coil system with transformed magnetic gradient fields.By shifting up the zero point of gradient fields,the designed new Y-gradient coil could provide enhanced electromagnetic performances.With more uniform coil winding arrangement,the net torque of the new coil is significantly reduced and the generated sound pressure level(SPL)is lower at most tested frequency bands.On the other hand,the new transverse gradient coil designed with rotated magnetic gradient fields produces considerably reduced electric field in the human body,which is important for the use of rapid MR sequences.It's demonstrated that a safer and patient-friendly design could be obtained by using transformed magnetic gradient fields,which is critical for practical use. 展开更多
关键词 Magnetic resonance imaging(MRI) Gradient coil transformed magnetic gradient field Acoustic noise Induced electric field
在线阅读 下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
5
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
在线阅读 下载PDF
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
6
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD transformER image segmentation remotely sensed imagery pyramid vision transformer
在线阅读 下载PDF
Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
7
作者 梁振宇 王朝瑾 +4 位作者 王阳阳 高皓琪 朱东涛 许颢砾 杨星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期378-386,共9页
Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public ... Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images. 展开更多
关键词 single-pixel imaging 3D Arnold transformation elliptic curve encryption image encryption
在线阅读 下载PDF
Triple-path feature transform network for ring-array photoacoustic tomography image reconstruction
8
作者 Lingyu Ma Zezheng Qin +1 位作者 Yiming Ma Mingjian Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期23-40,共18页
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high... Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling. 展开更多
关键词 Deep learning feature transformation image reconstruction limited-view measurement photoacoustic tomography.
在线阅读 下载PDF
Multiscale Fusion Transformer Network for Hyperspectral Image Classification
9
作者 Yuquan Gan Hao Zhang Chen Yi 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期255-270,共16页
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification... Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images. 展开更多
关键词 hyperspectral image land cover classification MULTI-SCALE transformER
在线阅读 下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
10
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
在线阅读 下载PDF
Pre-training transformer with dual-branch context content module for table detection in document images
11
作者 Yongzhi LI Pengle ZHANG +2 位作者 Meng SUN Jin HUANG Ruhan HE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期408-420,共13页
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such... Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM. 展开更多
关键词 Table detection Document image analysis transformER Dilated convolution Deformable convolution Feature fusion
在线阅读 下载PDF
Research on PolSAR Image Classification Method Based on Vision Transformer Considering Local Information
12
作者 Mingxia Zhang Aichun Wang +2 位作者 Xiaozheng Du Xinmeng Wang Yu Wu 《Journal of Computer and Communications》 2024年第9期22-38,共17页
In response to the problem of inadequate utilization of local information in PolSAR image classification using Vision Transformer in existing studies, this paper proposes a Vision Transformer method considering local ... In response to the problem of inadequate utilization of local information in PolSAR image classification using Vision Transformer in existing studies, this paper proposes a Vision Transformer method considering local information, LIViT. The method replaces image patch sequence with polarimetric feature sequence in the feature embedding, and uses convolution for mapping to preserve image spatial detail information. On the other hand, the addition of the wavelet transform branch enables the network to pay more attention to the shape and edge information of the feature target and improves the extraction of local edge information. The results in Wuhan, China and Flevoland, Netherlands show that considering local information when using Vision Transformer for PolSAR image classification effectively improves the image classification accuracy and shows better advantages in PolSAR image classification. 展开更多
关键词 Vision transformer POLSAR image Classification LIViT
在线阅读 下载PDF
ATFF: Advanced Transformer with Multiscale Contextual Fusion for Medical Image Segmentation
13
作者 Xinping Guo Lei Wang +2 位作者 Zizhen Huang Yukun Zhang Yaolong Han 《Journal of Computer and Communications》 2024年第3期238-251,共14页
Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance inte... Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively. 展开更多
关键词 Medical image Segmentation Advanced transformer Deep Supervision Attention Mechanism
在线阅读 下载PDF
Segmentation algorithm of complex ore images based on templates transformation and reconstruction 被引量:6
14
作者 Guo-ying Zhang Guan-zhou Liu Hong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期385-389,共5页
Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects wi... Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects with various sizes simultaneously,two adaptive windows in the image were chosen for each pixel;the gray value of windows was calculated by Otsu's threshold method.To extract the object skeleton,the definition principle of distance transformation templates was proposed.The ores linked together in a binary image were separated by distance transformation and gray reconstruction.The seed region of each object was picked up from the local maximum gray region of the reconstruction image.Starting from these seed regions,the watershed method was used to segment ore object effectively.The proposed algorithm marks and segments most objects from complex images precisely. 展开更多
关键词 ORES image analysis image segmentation morphological transformation ALGORITHMS
在线阅读 下载PDF
A Swin Transformer and Residualnetwork Combined Model for Breast Cancer Disease Multi-Classification Using Histopathological Images
15
作者 Jianjun Zhuang Xiaohui Wu +1 位作者 Dongdong Meng Shenghua Jing 《Instrumentation》 2024年第1期112-120,共9页
Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically... Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer. 展开更多
关键词 breast cancer pathological image swin transformer ResNet101 focal loss
在线阅读 下载PDF
Multi-Focus Image Fusion Based on Wavelet Transformation 被引量:4
16
作者 Peng Zhang Ying-Xun Tang +1 位作者 Yan-Hua Liang Xu-Bo Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期124-128,共5页
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi... In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application. 展开更多
关键词 variance MEASURE image fusion wavelet transformation multi-resolution analysis
在线阅读 下载PDF
An image encryption algorithm based on improved baker transformation and chaotic S-box 被引量:4
17
作者 Xing-Yuan Wang Huai-Huai Sun Hao Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期216-225,共10页
The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic sys... The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic system as an encryption key. Specifically, in the image scrambling stage, the algorithm primarily uses an improved baker transform method to process the image. In the image diffusion stage, the algorithm first uses the chaotic S-box method to process the encryption key. Secondly, an exclusive OR(XOR) operation is performed on the image and the encryption key to initially diffuse the image. Finally, the image is again diffused using the method of ortho XOR. Simulation analysis shows that the algorithm can achieve good encryption effect, simple and easy implementation, and good security. In the digital image communication transmission, it has good practical value. 展开更多
关键词 image encryption improved baker transformation chaotic S-box chaotic sequence
在线阅读 下载PDF
A GLCM-Feature-Based Approach for Reversible Image Transformation 被引量:2
18
作者 Xianyi Chen Haidong Zhong Zhifeng Bao 《Computers, Materials & Continua》 SCIE EI 2019年第4期239-255,共17页
Recently,a reversible image transformation(RIT)technology that transforms a secret image to a freely-selected target image is proposed.It not only can generate a stego-image that looks similar to the target image,but ... Recently,a reversible image transformation(RIT)technology that transforms a secret image to a freely-selected target image is proposed.It not only can generate a stego-image that looks similar to the target image,but also can recover the secret image without any loss.It also has been proved to be very useful in image content protection and reversible data hiding in encrypted images.However,the standard deviation(SD)is selected as the only feature during the matching of the secret and target image blocks in RIT methods,the matching result is not so good and needs to be further improved since the distributions of SDs of the two images may be not very similar.Therefore,this paper proposes a Gray level co-occurrence matrix(GLCM)based approach for reversible image transformation,in which,an effective feature extraction algorithm is utilized to increase the accuracy of blocks matching for improving the visual quality of transformed image,while the auxiliary information,which is utilized to record the transformation parameters,is not increased.Thus,the visual quality of the stego-image should be improved.Experimental results also show that the root mean square of stego-image can be reduced by 4.24%compared with the previous method. 展开更多
关键词 image encryption feature extraction reversible image transformation GLCM
在线阅读 下载PDF
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
19
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(SAR) images three-dimensional scattering center position reconstruction radargrammetry
在线阅读 下载PDF
Period of Arnold transformation and its application in image scrambling 被引量:2
20
作者 LI Bing XU Jia-wei 《Journal of Central South University of Technology》 2005年第z1期278-282,共5页
With the security problem of image information as the background, some more properties of the period of Arnold transformation of two-dimension were studied by means of introducing a integer sequence. Some new resuits ... With the security problem of image information as the background, some more properties of the period of Arnold transformation of two-dimension were studied by means of introducing a integer sequence. Some new resuits are obtained. Two interesting conjectures on the period of Arnold transformation are given. When making digital images scrambling by Arnold transformation, it is important to know the period of the transformation for the image. As the application of the theory, a new method for computing the periods at last are proposed. 展开更多
关键词 DIGITAL image PERIOD dynamic system ARNOLD transformation SCRAMBLING transformation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部