期刊文献+
共找到11,035篇文章
< 1 2 250 >
每页显示 20 50 100
A coupled cryogenic thermo-hydro-mechanical model for frozen medium:Theory and implementation in FDEM
1
作者 Lei Sun Xuhai Tang +3 位作者 Kareem Ramzy Aboayanah Qi Zhao Quansheng Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4335-4353,共19页
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret... This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions. 展开更多
关键词 thermo-hydro-mechanical(THM)coupling Low temperature Heat transfer Water migration Frost heave Combined finite-discrete element method(FDEM)
在线阅读 下载PDF
Mechanical behavior and damage constitutive model of sandstone under hydro-mechanical (H-M) coupling
2
作者 Tao Tan Chunyang Zhang +1 位作者 Yanlin Zhao Xiaoshuang Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期837-853,共17页
Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ... Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems. 展开更多
关键词 H-M coupling Water-saturated sandstone Mechanical mechanism Energy evolution D-C model
在线阅读 下载PDF
Aging Characteristics of Lithium-Ion Battery Under Fast Charging Based on Electrochemical-thermalmechanical Coupling Model
3
作者 Dong-Xu Zuo Pei-Chao Li 《电化学(中英文)》 CAS 北大核心 2024年第9期10-24,共15页
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip... The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures. 展开更多
关键词 Lithium-ion battery Aging characteristics Fast charging Electrochemical-thermal-mechanical coupling model
在线阅读 下载PDF
Hardening mechanism and thermal-solid coupling model of laminar plasma surface hardening of 65 Mn steel
4
作者 Xiuquan CAO Lin WANG +2 位作者 Haoming XU Guangzhong HU Chao LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期110-120,共11页
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h... In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel. 展开更多
关键词 65 Mn steel laminar plasma surface hardening hardening mechanism microstructure characteristics thermal-solid coupling model
在线阅读 下载PDF
Investigation of the electrical performance of high-speed aircraft radomes using a thermo-mechanical-electrical coupling model
5
作者 JI Jianmin WANG Wei +2 位作者 YU Huilong LIU Juan CHEN Bo 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1397-1410,共14页
During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents ... During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight. 展开更多
关键词 high-speed flight thermo-mechanical-electrical(TME) TME coupling model(TME-CM) dielectric temperature drift structural deformation electrical performance
在线阅读 下载PDF
Model Design and Simulation of an 80 kW Capacitor Coupled Substation Derived from a 132 kV Transmission Line
6
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Open Journal of Modelling and Simulation》 2025年第1期1-19,共19页
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li... The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods. 展开更多
关键词 Capacitor-coupled Substation Transmission Line-linked Capacitor-coupled Substation Capacitor-coupled Substation Simulation MICROGRIDS Rural Electrification Power System modeling
在线阅读 下载PDF
Degree of Freedom Analysis for Holographic MIMO Based on a Mutual-Coupling-Compliant Channel Model
7
作者 SUN Yunqi JIAN Mengnan +2 位作者 YANG Jun ZHAO Yajun CHEN Yijian 《ZTE Communications》 2024年第1期34-40,共7页
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ... Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system. 展开更多
关键词 channel model degree of freedom holographic MIMO mutual coupling
在线阅读 下载PDF
A fully coupled thermo-hydro-mechanical model for unsaturated porous media 被引量:7
8
作者 Weizhong Chen Xianjun Tan Hongdan Yu Guojun Wu Shanpo Jia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期31-40,共10页
In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and ... In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and fully unified coupled thermo-hydro-mechanical model for unsaturated porous media is required to simulate the complex coupling mechanisms involved.Based on modified Darcy's and Fourier's laws,equations of mechanical equilibrium,mass conservation and energy conservation are derived by introducing void ratio and volumetric liquid water content into the model.The newly derived model takes into account the effects of temperature on the dynamic viscosity of liquid water and void ratio,the influence of liquid flow on temperature gradient(thermo-osmosis),the influence on mass and heat conservation equations,and the influence of heat flow on water pressure gradient and thermal convection.The new coupled THM constitutive model is constructed by a finite element program and is used to simulate the coupled behavior of a tunnel during excavation,ventilation and concrete lining stages.Oil and gas engineering,underground disposal of nuclear waste and tunnel engineering may be benefited from the development of the new model. 展开更多
关键词 porous media unsaturated media coupled thermo-hydro-mechanical (THM) model
在线阅读 下载PDF
Coupled thermo-hydro-mechanical-migratory model for dual-porosity medium and numerical analysis 被引量:6
9
作者 张玉军 杨朝帅 《Journal of Central South University》 SCIE EI CAS 2011年第4期1256-1262,共7页
A coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated-unsaturated ubiquitous-joint rockmass was established,in which the stress field and the temperature field were single,but the see... A coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated-unsaturated ubiquitous-joint rockmass was established,in which the stress field and the temperature field were single,but the seepage field and the concentration field were double,and the influences of sets,spaces,angles,continuity ratios,stiffnesses of fractures on the constitutive relationship of the medium were considered.Also,the relative two-dimensional program of finite element method was developed.Taking a hypothetical nuclear waste repository as a calculation example,the case in which the rockmass was unsaturated dual-porosity medium and radioactive nuclide leak was simulated numerically,and the temperatures,negative pore pressures,saturations,flow velocities,nuclide concentrations and principal stresses in the rockmass were investigated.The results show that the negative pore pressures and nuclide concentrations in the porosity and fracture present different changes and distributions.Even though the saturation degree in porosity is only about 1/10 that in fracture,the flow velocity of underground water in fracture is about three times that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity.The value of nuclide concentration in fracture is close to that in porosity. 展开更多
关键词 ubiquitous-joint rockmass dual-porosity medium thermo-hydro-mechanical-migratory coupling model numericalanalysis
在线阅读 下载PDF
Coupled thermo-hydro-mechanical modeling of frost heave and water migration during artificial freezing of soils for mineshaft sinking 被引量:4
10
作者 M.Zhelnin A.Kostina +3 位作者 A.Prokhorov O.Plekhov M.Semin L.Levin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期537-559,共23页
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr... Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing. 展开更多
关键词 Artificial ground freezing(AGF) thermo-hydro-mechanical(THM)modeling Frost effects Frozen wall Shaft sinking
在线阅读 下载PDF
Formulation of thermo-hydro-mechanical coupling behavior of unsaturated soils based on hybrid mixture theory 被引量:2
11
作者 Guo-Qing Cai Cheng-Gang Zhao +1 位作者 Dai-Chao Sheng An-Nan Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期559-568,共10页
Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived... Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived to model the THM coupling behavior of unsaturated soils. The free-energy and dissipative functions for different phases are derived from Taylor's series expansions. Constitutive relations for THM coupled behaviors of unsaturated soils, which include deformation, entropy change, fluid flow, heat conduction, and dynamic compatibility conditions on the interfaces, are then established. The number of field equations is shown to be equal to the number of unknown variables; thus, a closure of this coupling problem is established. In addition to modifications of the physical conservation equations with coupling effect terms, the constitutive equations, which consider the coupling between elastoplastic deformation of the soil skeleton, fluid flow, and heat transfer, are also derived. 展开更多
关键词 thermo-hydro-mechanical coupling Unsatu-rated soils Hybrid mixture theory Constitutive equations ·Elastoplastic deformation
在线阅读 下载PDF
Rheological numerical simulation for thermo-hydro-mechanical coupling analysis for rock mass
12
作者 王芝银 许杰 +2 位作者 李云鹏 郭书太 艾传志 《Journal of Coal Science & Engineering(China)》 2007年第2期135-139,共5页
Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological ... Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological behavior of rock mass. In the paper, based on the fundamental theories of rock mass coupling theory and rheological mechanics, the rheological model for fully coupled thermo-hydro-mechanical analysis for rock mass was set up, and the corresponding constitutive relationship, the conservation equation of mass and the conservation equation of energy were given, and the finite element formulas were derived for coupling analysis of rock mass. During establishing governing equations, rock mass was assumed approximately as macro-equivalent continuum medium. The obtained rheological numerical model for fully coupled thermo-hydro-mechanical analysis can be used for analyzing and predicting the long-term stability of underground caverns and slope engineering under the condition of thermo-hydro-mechanical coupling with rheological deformation. 展开更多
关键词 thermo-hydro-mechanical coupling rheological analysis FEM model rockmass
在线阅读 下载PDF
FEM analyses for influences of pressure solution on thermo-hydro-mechanical coupling in porous rock mass
13
作者 张玉军 杨朝帅 《Journal of Central South University》 SCIE EI CAS 2012年第8期2333-2339,共7页
The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in... The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same. 展开更多
关键词 pressure solution porous medium thermo-hydro-mechanical coupling FEM analysis
在线阅读 下载PDF
COUPLING MODEL OF EXTENDED MANUFACTURING ORGANIZATION AND ITS APPLICATION 被引量:1
14
作者 郭宇 安波 廖文和 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期137-144,共8页
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti... For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective. 展开更多
关键词 networked manufacturing manufacturing organization correlation matrix coupling model
在线阅读 下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
15
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
在线阅读 下载PDF
The dynamic coupling model and its application of urbanization and eco-environment in Hexi Corridor 被引量:8
16
作者 QIAO Biao FANG Chuanglin 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期491-499,共9页
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ... This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated. 展开更多
关键词 Hexi Corridor URBANIZATION eeo-environment harmonious development dynamic coupling model
在线阅读 下载PDF
A Numerical Study on Effects of Land-Surface Heterogeneity from' Combined Approach' on Atmospheric ProcessPart II: Coupling-Model Simulations 被引量:5
17
作者 曾新民 赵鸣 苏炳凯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期241-255,共15页
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m... Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations. 展开更多
关键词 Combined approach Land surface heterogeneity coupling model Numerical experiment
在线阅读 下载PDF
FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION 被引量:4
18
作者 薛强 梁冰 +1 位作者 刘晓丽 李宏艳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第12期1475-1485,共11页
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami... The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory. 展开更多
关键词 contaminant transport unsaturated zone numerical model fluid-solid coupling interaction asymptotical solution
在线阅读 下载PDF
A model for coupling reservoir inflow and wellbore flow in fishbone wells 被引量:4
19
作者 Lian Peiqing Cheng Linsong +1 位作者 Tan Xuequn Li Linlin 《Petroleum Science》 SCIE CAS CSCD 2012年第3期336-342,共7页
A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wel... A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the main wellbore is irregular "U" shaped under the pseudo-steady flow condition, and the space-symmetrical branches have the same flow distribution pattern. In the initial production period, the flow rate increases significantly as the length of branches and the angle between branches and the main wellbore increase. As the production continues, the length and angle of branches have only a slight effect on the flow in fishbone wells. 展开更多
关键词 Fishbone wells coupling model unsteady flow state pseudo-steady flow state
在线阅读 下载PDF
Heat-fluid-solid coupling model for gas-bearing coal seam and numerical modeling on gas drainage promotion by heat injection 被引量:5
20
作者 Ruifu Yuan Chunling Chen +1 位作者 Xiao Wei Xiaojun Li 《International Journal of Coal Science & Technology》 EI 2019年第4期564-576,共13页
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory... Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China. 展开更多
关键词 Gassy COAL Heat-fluid-solid coupling model Heat injection GAS extraction Numerical modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部