期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spin Polarizations of Electron with Rashba Couplings in T-Shaped Devices:A Finite Element Approach
1
作者 朱松 刘会平 易林 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第9期563-572,共10页
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The ... A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba eoefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily. 展开更多
关键词 ballistic transport spin polarized transport in semiconductors scattering mechanism spin-orbitcoupling
在线阅读 下载PDF
双变量部分theta函数的乘积公式与性质
2
作者 王瑾 《数学学报(中文版)》 CSCD 北大核心 2022年第1期53-66,共14页
本文研究一类新的双变量部分theta函数,它是经典部分theta函数的推广,主要围绕这类函数的乘积公式、递推关系、级数展开等性质展开讨论.作为主要结果,我们建立了任意两个双变量部分theta函数的乘积公式,推广了Andrews-Warnaar经典部分th... 本文研究一类新的双变量部分theta函数,它是经典部分theta函数的推广,主要围绕这类函数的乘积公式、递推关系、级数展开等性质展开讨论.作为主要结果,我们建立了任意两个双变量部分theta函数的乘积公式,推广了Andrews-Warnaar经典部分theta函数的乘积公式,发现了双变量部分theta函数所满足的二阶递推关系,得到了双变量部分theta函数θ(q,x;ab)关于{θ(q,axq^(n);b)|n≥0}和{θ(q,xq^(n);b)|n≥0}的级数展开式.作为这些结果的进一步应用,还给出了_(3)Φ_(2)级数的新的乘积公式和双变量部分theta函数的三元表示. 展开更多
关键词 双变量部分theta函数 乘积公式 级数展开 递推关系 t-系数法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部