Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characte...Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characteristics and Rayleigh criterion limitations. In this paper, a full convolutional network is designed to segment and reconstruct the received signals, enabling the automatic identification of target modalities. This approach eliminates clutter and mode conversion interference when calculating direct and accompanying acoustic fields in time-domain topological energy(TDTE) imaging.Subsequently, the measured accompanying acoustic field is reversed for adaptive focusing on defects and enhance the imaging quality. To circumvent the limitations of the Rayleigh criterion, the direct acoustic field and the accompanying acoustic field were fused to characterize the pixel distribution in the imaging region, achieving Lamb wave super-resolution imaging. Experimental results indicate that compared to the sign coherence factor-total focusing method(SCF-TFM),the proposed method achieves a 31.41% improvement in lateral resolution and a 29.53% increase in signal-to-noise ratio for single-blind-hole defects. In the case of multiple-blind-hole defects with spacings greater than the Rayleigh criterion resolution limit, it exhibits a 27.23% enhancement in signal-to-noise ratio. On the contrary, when the defect spacings are relatively smaller than the limit, this method has a higher resolution limit than SCF-TFM in super-resolution imaging.展开更多
Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have e...Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.展开更多
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,...Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.展开更多
The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ...The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.展开更多
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has...Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.展开更多
Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution recon...Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.展开更多
In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction ne...In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.展开更多
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the ch...Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution,which signicantly affects the absorption and reflection of light,the spectral feature is proved to be important for leukocytes classication and identication.This paper proposes an accurate identication method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging(HSI)technology which combines the spectral information.The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm.Then,the spectral features are extracted and combined with the spatial features.Based on this,the support vector machine(SVM)is applied for classication ofve types of leukocytes and abnormal leukocytes.Compared with different classication methods,the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes,improving the accuracy in the classication and identication of leukocytes.This paper only selects one subtype of ALL for test,and the proposed method can be applied for detection of other leukemia in the future.展开更多
Purpose: To apply and evaluate a super-resolution scheme based on the super-resolution convolutional neural network (SRCNN) for enhancing image resolution in digital mammograms. Materials and Methods: A total of 711 m...Purpose: To apply and evaluate a super-resolution scheme based on the super-resolution convolutional neural network (SRCNN) for enhancing image resolution in digital mammograms. Materials and Methods: A total of 711 mediolateral oblique (MLO) images including breast lesions were sampled from the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM). We first trained the super-resolution convolutional neural network (SRCNN), which is a deep-learning based super-resolution method. Using this trained SRCNN, high-resolution images were reconstructed from low-resolution images. We compared the image quality of the super-resolution method and that obtained using the linear interpolation methods (nearest neighbor and bilinear interpolations). To investigate the relationship between the image quality of the SRCNN-processed images and the clinical features of the mammographic lesions, we compared the image quality yielded by implementing the SRCNN, in terms of the breast density, the Breast Imaging-Reporting and Data System (BI-RADS) assessment, and the verified pathology information. For quantitative evaluation, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were measured to assess the image restoration quality and the perceived image quality. Results: The super-resolution image quality yielded by the SRCNN was significantly higher than that obtained using linear interpolation methods (p p Conclusion: SRCNN can significantly outperform conventional interpolation methods for enhancing image resolution in digital mammography. SRCNN can significantly improve the image quality of magnified mammograms, especially in dense breasts, high-risk BI-RADS assessment groups, and pathology-verified malignant cases.展开更多
A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing pr...A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.展开更多
Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-reso...Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.展开更多
Carbohydrates on cell surfaces play a crucial role in a wide variety of biological processes,including cell adhesion,recognition and signaling,viral and bacterial infection,in°ammation and metastasis.However,owin...Carbohydrates on cell surfaces play a crucial role in a wide variety of biological processes,including cell adhesion,recognition and signaling,viral and bacterial infection,in°ammation and metastasis.However,owing to the large diversity and complexity of carbohydrate structure and nongenetically synthesis,glycoscience is the least understood¯eld compared with genomics and proteomics.Although the structures and functions of carbohydrates have been investigated by various conventional analysis methods,the distribution and role of carbohydrates in cell membranes remain elusive.This review focuses on the developments and challenges of super-resolution imaging in glycoscience through introduction of imaging principle and the available°uorescent probes for super-resolution imaging,the labeling strategies of carbohydrates,and the recent applications of super-resolution imaging in glycoscience,which will promote the super-resolution imaging technology as a promising tool to provide new insights into the study of glycoscience.展开更多
An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNe...An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNet_v2,Inception_v3,Densenet121,ResNet101_v2,and ResNet-101 to develop microscopic image classification models,and then the network structures of seven different convolutional neural networks(CNNs)were compared.It shows that the multi-layer representation of rock features can be represented through convolution structures,thus better feature robustness can be achieved.For the loss function,cross-entropy is used to back propagate the weight parameters layer by layer,and the accuracy of the network is improved by frequent iterative training.We expanded a self-built dataset by using transfer learning and data augmentation.Next,accuracy(acc)and frames per second(fps)were used as the evaluation indexes to assess the accuracy and speed of model identification.The results show that the Xception-based model has the optimum performance,with an accuracy of 97.66%in the training dataset and 98.65%in the testing dataset.Furthermore,the fps of the model is 50.76,and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification.This proposed method is proved to be robust and versatile in generalization performance,and it is suitable for both geologists and engineers to identify lithology quickly.展开更多
Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies.The structural and functional imaging of tissue microvasculature in vivo is a clinica...Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies.The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities.Contrast-enhanced ultrasound(CEUS)is a popular clinical tool for characterizing tissue microvasculature,due to the moderate cost,wide accessibility,and absence of ionizing radiation of ultrasound.展开更多
Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,w...Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ...Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.展开更多
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent...Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.展开更多
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res...Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174085)the Key Research and Development Project of Changzhou, Jiangsu Province, China (Grant No. CE20235054)the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24 0833)。
文摘Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characteristics and Rayleigh criterion limitations. In this paper, a full convolutional network is designed to segment and reconstruct the received signals, enabling the automatic identification of target modalities. This approach eliminates clutter and mode conversion interference when calculating direct and accompanying acoustic fields in time-domain topological energy(TDTE) imaging.Subsequently, the measured accompanying acoustic field is reversed for adaptive focusing on defects and enhance the imaging quality. To circumvent the limitations of the Rayleigh criterion, the direct acoustic field and the accompanying acoustic field were fused to characterize the pixel distribution in the imaging region, achieving Lamb wave super-resolution imaging. Experimental results indicate that compared to the sign coherence factor-total focusing method(SCF-TFM),the proposed method achieves a 31.41% improvement in lateral resolution and a 29.53% increase in signal-to-noise ratio for single-blind-hole defects. In the case of multiple-blind-hole defects with spacings greater than the Rayleigh criterion resolution limit, it exhibits a 27.23% enhancement in signal-to-noise ratio. On the contrary, when the defect spacings are relatively smaller than the limit, this method has a higher resolution limit than SCF-TFM in super-resolution imaging.
文摘Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.
基金National Natural Science Foundation of China (62275267, 62335018, 12127805, 62105359)National Key Research and Development Program of China (2021YFF0700303, 2022YFE0100700)Youth Innovation Promotion Association, CAS (2021401)
文摘Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
基金Guangdong Science and Technology Program under Grant No.202206010052Foshan Province R&D Key Project under Grant No.2020001006827Guangdong Academy of Sciences Integrated Industry Technology Innovation Center Action Special Project under Grant No.2022GDASZH-2022010108.
文摘The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.
基金supported by Beijing Municipal Science and Technology Project(No.Z221100007122003).
文摘Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.
基金supported by National Natural Science Foundation of China(No.62063014)。
文摘Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.
文摘In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61975056 and 61901173)the Shanghai Natural Science Foundation(Grant No.19ZR1416000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.14DZ2260800 and 18511102500).
文摘Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution,which signicantly affects the absorption and reflection of light,the spectral feature is proved to be important for leukocytes classication and identication.This paper proposes an accurate identication method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging(HSI)technology which combines the spectral information.The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm.Then,the spectral features are extracted and combined with the spatial features.Based on this,the support vector machine(SVM)is applied for classication ofve types of leukocytes and abnormal leukocytes.Compared with different classication methods,the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes,improving the accuracy in the classication and identication of leukocytes.This paper only selects one subtype of ALL for test,and the proposed method can be applied for detection of other leukemia in the future.
文摘Purpose: To apply and evaluate a super-resolution scheme based on the super-resolution convolutional neural network (SRCNN) for enhancing image resolution in digital mammograms. Materials and Methods: A total of 711 mediolateral oblique (MLO) images including breast lesions were sampled from the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM). We first trained the super-resolution convolutional neural network (SRCNN), which is a deep-learning based super-resolution method. Using this trained SRCNN, high-resolution images were reconstructed from low-resolution images. We compared the image quality of the super-resolution method and that obtained using the linear interpolation methods (nearest neighbor and bilinear interpolations). To investigate the relationship between the image quality of the SRCNN-processed images and the clinical features of the mammographic lesions, we compared the image quality yielded by implementing the SRCNN, in terms of the breast density, the Breast Imaging-Reporting and Data System (BI-RADS) assessment, and the verified pathology information. For quantitative evaluation, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were measured to assess the image restoration quality and the perceived image quality. Results: The super-resolution image quality yielded by the SRCNN was significantly higher than that obtained using linear interpolation methods (p p Conclusion: SRCNN can significantly outperform conventional interpolation methods for enhancing image resolution in digital mammography. SRCNN can significantly improve the image quality of magnified mammograms, especially in dense breasts, high-risk BI-RADS assessment groups, and pathology-verified malignant cases.
基金Supported by the National Naturral Science Foundation of China(61301191)
文摘A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92050102)the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074, 20720220134, 202006310051, and 20720220033)。
文摘Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.
基金This work was supported by NSFC (Grants 31330082,21373200,21525314)the Instrument Developing project of the Chinese Academy of Sciences (Grant YZ201455).
文摘Carbohydrates on cell surfaces play a crucial role in a wide variety of biological processes,including cell adhesion,recognition and signaling,viral and bacterial infection,in°ammation and metastasis.However,owing to the large diversity and complexity of carbohydrate structure and nongenetically synthesis,glycoscience is the least understood¯eld compared with genomics and proteomics.Although the structures and functions of carbohydrates have been investigated by various conventional analysis methods,the distribution and role of carbohydrates in cell membranes remain elusive.This review focuses on the developments and challenges of super-resolution imaging in glycoscience through introduction of imaging principle and the available°uorescent probes for super-resolution imaging,the labeling strategies of carbohydrates,and the recent applications of super-resolution imaging in glycoscience,which will promote the super-resolution imaging technology as a promising tool to provide new insights into the study of glycoscience.
基金support from the National Natural Science Foundation of China(Grant Nos.52022053 and 52009073)the Natural Science Foundation of Shandong Province(Grant No.ZR201910270116).
文摘An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNet_v2,Inception_v3,Densenet121,ResNet101_v2,and ResNet-101 to develop microscopic image classification models,and then the network structures of seven different convolutional neural networks(CNNs)were compared.It shows that the multi-layer representation of rock features can be represented through convolution structures,thus better feature robustness can be achieved.For the loss function,cross-entropy is used to back propagate the weight parameters layer by layer,and the accuracy of the network is improved by frequent iterative training.We expanded a self-built dataset by using transfer learning and data augmentation.Next,accuracy(acc)and frames per second(fps)were used as the evaluation indexes to assess the accuracy and speed of model identification.The results show that the Xception-based model has the optimum performance,with an accuracy of 97.66%in the training dataset and 98.65%in the testing dataset.Furthermore,the fps of the model is 50.76,and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification.This proposed method is proved to be robust and versatile in generalization performance,and it is suitable for both geologists and engineers to identify lithology quickly.
基金This study was supported by the National Cancer Institute(NCI)of the National Institutes of Health(NIH)under Award(No.R00CA214523).
文摘Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies.The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities.Contrast-enhanced ultrasound(CEUS)is a popular clinical tool for characterizing tissue microvasculature,due to the moderate cost,wide accessibility,and absence of ionizing radiation of ultrasound.
基金supported in part by the National Natural Science Foundation of China(62276192)。
文摘Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金The authors are highly thankful to the Development Research Center of Guangxi Relatively Sparse-populated Minorities(ID:GXRKJSZ201901)to the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281164)This research was financially supported by the project of outstanding thousand young teachers’training in higher education institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing.
文摘Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.
基金supported by the National Natural Science Foundation of China(61761028)。
文摘Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.
基金This work was supported in part by the National Science Foundation of China under Grant 61572526.
文摘Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.