Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and...Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and safety of the overall operation of power system. There are many reliability strategies for relaying protection in smart substation. In practice, the key points of relaying protection should be clarified. Based on the reality, the protection configuration should be strengthened;the voltage limited delay should be used for protection, and the protection configuration scheme of actual lines should be paid attention to, so as to improve the reliability of relaying protection in smart substation and promote the realization of stable and sustainable development of power system and smart substation.展开更多
Reliabilities of transmission and substation facilities with voltage levelof220 kVoraboveIn 2007, there were totally 356 power supply enterprises, including 28 EHV transmission and substation enterprises, and 245 powe...Reliabilities of transmission and substation facilities with voltage levelof220 kVoraboveIn 2007, there were totally 356 power supply enterprises, including 28 EHV transmission and substation enterprises, and 245 power generation enterprises submitting reliability performances of electric facilities at a voltage level of 220 kV or above to the Electric Power Reliability Management Center. The reliability indices of transmission and展开更多
This paper proposes a novel solution for the secondary system of a primary distribution substation. First an evaluation is made of the changes that are to be expected for distribution substations in the future. Distri...This paper proposes a novel solution for the secondary system of a primary distribution substation. First an evaluation is made of the changes that are to be expected for distribution substations in the future. Distributed generation, electric vehicles and other active resources will change the behavior of the distribution network in a manner that will have a great deal of implications for distribution substations. The question is how the role of the distribution substations will change when the visions of smart grids become reality. The proposed solution consists of bay level protection and control IEDs forming the backbone of the secondar?, system. The functionality is complemented with a substation level Station Computer, providing value added and advanced functionality. In addition required communication and time synchronization methods are presented. A life cycle cost evaluation is also performed on the proposed solution, and it is compared with the current dominant concept based exclusively on bay level devices.展开更多
The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a fo...The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.展开更多
传统的序贯交叉熵(cross-entropy sequential Monte Carlo,CESMC)方法无法对包含多状态变电站等效元件模型的输电系统进行可靠性评估。为此,首先对变电站等效状态数目进行分析,并基于马尔可夫与交叉熵重要性抽样理论推导了变电站等效多...传统的序贯交叉熵(cross-entropy sequential Monte Carlo,CESMC)方法无法对包含多状态变电站等效元件模型的输电系统进行可靠性评估。为此,首先对变电站等效状态数目进行分析,并基于马尔可夫与交叉熵重要性抽样理论推导了变电站等效多状态元件的最优可靠性参数表达式以及参数优化的迭代计算式,提出了一种适用于输变电联合系统的改进CESMC可靠性评估方法,实现了对传统CESMC可靠性评估方法适用范围的扩展,解决了序贯交叉熵无法应用于多状态系统可靠性评估的难题。结合改进CESMC方法,实现包含变电站等效元件的输电系统可靠性评估加速,进一步构建了输变电联合系统可靠性评估模型。通过对IEEE-RTS79测试算例进行可靠性评估,验证了该方法的有效性,仿真结果表明,该方法可以在保证计算精度的前提下,较大地提升输变电联合系统可靠性评估的效率,具有一定的实用价值。展开更多
Mission-critical IEC 61850 system architectures are designed to tolerate hardware failures to achieve the highest reliability performance.Hence,multi-channel systems are used in such systems within industrial faciliti...Mission-critical IEC 61850 system architectures are designed to tolerate hardware failures to achieve the highest reliability performance.Hence,multi-channel systems are used in such systems within industrial facilities to isolate machinery when there are process abnormalities.Inevitably,multi-channel systems introduce Common Cause Failure(CCF)since the subsystems can rarely be independent.This paper integrates CCF into the Markov reliability model to enhance the model flexibility to investigate synchronous generator intra-bay SCN architecture reliability performance considering the quality of repairs and CCF.The Markov process enables integration of the impact of CCF factors on system performance.The case study results indicate that CCF,coupled with imperfect repairs,significantly reduce system reliability performance.High sensitivity is observed at low levels of CCF,whereas the highest level of impact occurs when the system diagnostic coverage is 99%based on ISO 13849-1,and reduces as the diagnostic coverage level reduces.Therefore,it is concluded that the severity of CCF depends more on system diagnostic coverage level than the repair efficiency,although both factors impact the system overall performance.Hence,CCF should be con-sidered in determining the reliability performance of mission-critical communication networks in power distribution centres.展开更多
文摘Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and safety of the overall operation of power system. There are many reliability strategies for relaying protection in smart substation. In practice, the key points of relaying protection should be clarified. Based on the reality, the protection configuration should be strengthened;the voltage limited delay should be used for protection, and the protection configuration scheme of actual lines should be paid attention to, so as to improve the reliability of relaying protection in smart substation and promote the realization of stable and sustainable development of power system and smart substation.
文摘Reliabilities of transmission and substation facilities with voltage levelof220 kVoraboveIn 2007, there were totally 356 power supply enterprises, including 28 EHV transmission and substation enterprises, and 245 power generation enterprises submitting reliability performances of electric facilities at a voltage level of 220 kV or above to the Electric Power Reliability Management Center. The reliability indices of transmission and
文摘This paper proposes a novel solution for the secondary system of a primary distribution substation. First an evaluation is made of the changes that are to be expected for distribution substations in the future. Distributed generation, electric vehicles and other active resources will change the behavior of the distribution network in a manner that will have a great deal of implications for distribution substations. The question is how the role of the distribution substations will change when the visions of smart grids become reality. The proposed solution consists of bay level protection and control IEDs forming the backbone of the secondar?, system. The functionality is complemented with a substation level Station Computer, providing value added and advanced functionality. In addition required communication and time synchronization methods are presented. A life cycle cost evaluation is also performed on the proposed solution, and it is compared with the current dominant concept based exclusively on bay level devices.
基金supported by the 2020 Infrastructure Engineering Technology Innovation Projectthe“Intelligent Substation”Supporting Technology Research Project(031200WS22200001)。
文摘The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.
文摘传统的序贯交叉熵(cross-entropy sequential Monte Carlo,CESMC)方法无法对包含多状态变电站等效元件模型的输电系统进行可靠性评估。为此,首先对变电站等效状态数目进行分析,并基于马尔可夫与交叉熵重要性抽样理论推导了变电站等效多状态元件的最优可靠性参数表达式以及参数优化的迭代计算式,提出了一种适用于输变电联合系统的改进CESMC可靠性评估方法,实现了对传统CESMC可靠性评估方法适用范围的扩展,解决了序贯交叉熵无法应用于多状态系统可靠性评估的难题。结合改进CESMC方法,实现包含变电站等效元件的输电系统可靠性评估加速,进一步构建了输变电联合系统可靠性评估模型。通过对IEEE-RTS79测试算例进行可靠性评估,验证了该方法的有效性,仿真结果表明,该方法可以在保证计算精度的前提下,较大地提升输变电联合系统可靠性评估的效率,具有一定的实用价值。
文摘Mission-critical IEC 61850 system architectures are designed to tolerate hardware failures to achieve the highest reliability performance.Hence,multi-channel systems are used in such systems within industrial facilities to isolate machinery when there are process abnormalities.Inevitably,multi-channel systems introduce Common Cause Failure(CCF)since the subsystems can rarely be independent.This paper integrates CCF into the Markov reliability model to enhance the model flexibility to investigate synchronous generator intra-bay SCN architecture reliability performance considering the quality of repairs and CCF.The Markov process enables integration of the impact of CCF factors on system performance.The case study results indicate that CCF,coupled with imperfect repairs,significantly reduce system reliability performance.High sensitivity is observed at low levels of CCF,whereas the highest level of impact occurs when the system diagnostic coverage is 99%based on ISO 13849-1,and reduces as the diagnostic coverage level reduces.Therefore,it is concluded that the severity of CCF depends more on system diagnostic coverage level than the repair efficiency,although both factors impact the system overall performance.Hence,CCF should be con-sidered in determining the reliability performance of mission-critical communication networks in power distribution centres.