Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo...Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While t...App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.展开更多
Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and ...Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.展开更多
BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,an...BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,and short stature.Approximately 60%-70%of patients with CCD have mutations in the RUNX family transcription factor 2 gene.However,prenatal diagnosis of CCD is difficult when the family history is unknown.CASE SUMMARY We report a rare case of fetal CCD with an unknown family history,confirmed by prenatal ultrasonography and genetic testing at a gestational age of 16 weeks.The genetic reports indicated that the fetus carried pathogenic mutations in the RUNX family transcription factor 2 gene(c.674G>A).After careful consideration,the pregnant woman and her family decided to continue the pregnancy.CONCLUSION Definitive prenatal diagnosis of CCD should include family history,ultrasound diagnosis,and genetic analysis,especially if family history is unknown.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND Bipolar disorder(BD)is a severe mental illness characterized by significant mood swings.Effective drug treatment modalities are crucial for managing BD.AIM To analyze the current status and future trends of...BACKGROUND Bipolar disorder(BD)is a severe mental illness characterized by significant mood swings.Effective drug treatment modalities are crucial for managing BD.AIM To analyze the current status and future trends of global research on BD drug treatment over the last decade.METHODS The Web of Science Core Collection database spanning from 2015 to 2024 was utilized to retrieve literature related to BD drug treatment.A total of 2624 articles were extracted.Data visualization and analysis were conducted using CiteSpace,VOSviewer,Pajek,Scimago Graphica,and R-studio bibliometrix to identify RESULTS The United States,China,and the United Kingdom have made the most significant contributions to research on BD drug treatment and formed notable research collaboration networks.The University of Pittsburgh,Massachusetts General Hospital,and the University of Michigan have been identified as the major research institutions in this field.The Journal of Affective Disorders is the most influential journal.A keyword analysis revealed research hotspots related to clinical symptoms,drug efficacy,and genetic mechanisms.A citation analysis identified the management guidelines published by Yatham et al in 2018 as the most cited paper.CONCLUSION This study provides a detailed overview of the field of BD drug treatment,highlighting key contributors,research hotspots,and future directions.The study findings can be employed as a reference for future research and policymaking,which may enable further development and optimization of BD pharmacotherapy.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alte...BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alterations,mechanisms,and signaling pathways underlying gallbladder NEC remain unclear.CASE SUMMARY This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient,who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.Targeted gene sequencing and bioinformatics analysis tools,including STRING,GeneMANIA,Metascape,TRRUST,Sangerbox,cBioPortal and GSCA,were used to analyze the biological functions and features of mutated genes in gallbladder NEC.Twelve mutations(APC,ARID2,IFNA6,KEAP1,RB1,SMAD4,TP53,BTK,GATA1,GNAS,and PRDM3)were identified,and the tumor mutation burden was determined to be 9.52 muts/Mb via targeted gene sequencing.A protein-protein interaction network showed significant interactions among the twelve mutated genes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to assess mutation functions and pathways.The results revealed 40 tumor-related pathways.A key regulatory factor for gallbladder NEC-related genes was identified,and its biological functions and features were compared with those of gallbladder carcinoma.CONCLUSION Gallbladder NEC requires standardized treatment.Comparisons with other gallbladder carcinomas revealed clinical phenotypes,molecular alterations,functional characteristics,and enriched pathways.展开更多
The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental result...The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.展开更多
This study aims to clarify the conceptual characteristics of artifact utilization in nursing practice instruction. Five selected articles were analyzed using the concept analysis method by Walker and Avant. The attrib...This study aims to clarify the conceptual characteristics of artifact utilization in nursing practice instruction. Five selected articles were analyzed using the concept analysis method by Walker and Avant. The attributes, antecedents, and consequences of the concept were extracted from the target literature. The analysis revealed two attributes (“connecting people to people” and “connecting people to objects”);two antecedents (“recognition of artifacts” and “selection of artifacts”);and two consequences (“designing a fulfilling learning environment” and “improving the quality of education”). The concept was defined as “promoting the utilization of artifacts by recognizing and selecting them, connecting people to people and people to objects, designing a fulfilling learning environment, and improving the quality of education”.展开更多
The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener...The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.展开更多
Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of ...Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of its value-added products and their profitability in the North-West Region remains underexplored. This study examined the profitability of maize value-added products in Mezam Division, with the objectives to: 1) identify various maize-based products, 2) assess the diversity of these products, 3) conduct a cost-benefit analysis of selected products, 4) examine the relationship between profitability and product diversity, and 5) identify key constraints impacting profitability. To achieve these objectives, structured questionnaires were administered to 500 small-scale maize entrepreneurs randomly selected from five subdivisions. Descriptive statistics were used to analyze objective 1 and 5, while the Shannon Diversity Index was employed to assess product diversity. Additionally, a cost-benefit analysis was conducted on four selected products namely pap, parched corn, peeled parboiled corn, and corn beer, and a correlation analysis was used to examine objective 4. In total, 13 maize value-added products were identified, with a diversity index of 4.4. The total cost of processing the four selected products per entrepreneur using 18 kg of maize per product was FCFA 83631.5 (US $132.75), while the total revenue was FCFA 121864.5 (US $193.43), resulting in an economic profit of FCFA 38,233 (US $60.69). Pap emerged as the most profitable product, with an economic profit of FCFA 27,875 (US $44.24), while corn beer was the least profitable, with an economic profit of FCFA 2133.46 (US $3.39). The correlation analysis revealed a strong negative relationship between product diversity and profitability (r = −0.91), indicating that entrepreneurs can maximize profitability by focusing on a few high-demand products like pap and parched corn. Key constraints to profitability included fluctuating market prices, high production costs, limited access to finance, and inadequate storage facilities. Despite these challenges, our findings indicate that maize value addition is profitable in Mezam Division. Entrepreneurs can leverage this data for informed decision-making and future investments. It is recommended that the government promote maize value addition and provide financial support for modern processing equipment to boost profitability and income generation.展开更多
Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this devic...Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range.展开更多
Background:Facelift procedures represent a critical area of aesthetic and reconstructive surgery that addresses the physical and psychological impacts of facial aging.Advancements in techniques and technologies over t...Background:Facelift procedures represent a critical area of aesthetic and reconstructive surgery that addresses the physical and psychological impacts of facial aging.Advancements in techniques and technologies over time have transformed the field,making it essential to assess the evolution of research trends.This study performed a bibliometric analysis of facelift research by examining the top 50 most cited publications to evaluate their contributions,thematic evolution,and collaborative networks.Methods:The Scopus database was used to identify relevant publications.A total of 50 documents were selected,comprising 47 articles and 3 reviews published across 16 academic sources.The inclusion criteria focused on publications with substantial relevance to facelift research;this ensured comprehensive coverage of the topic.Key performance indicators(for the authors)such as the number of papers,total citations,h-index,g-index,m-index,HG composite,and Q2 index were calculated.Citation analysis and collaborative network mapping were conducted to identify the leading contributors,including authors,universities,countries,and sources.Results:The findings indicated an annual growth rate of 1.34%,with an average document age of 29.4 years and an average citation count per document of 134.9.The analysis identified the top authors and their collaborative networks,along with key contributions from various universities,countries,and sources.The thematic evolution of facelift research was examined across these 50 papers;this revealed important trends and shifts within the field.Conclusion:This bibliometric analysis offers valuable insights into the development and influence of facelift research over a 52-year span.It highlights significant contributors and outlines thematic shifts,providing directions for future research and collaboration in this field.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep...Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.展开更多
Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatia...Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatial, temporal, spectral, and radiometric data, one may get a fresh comprehension of the geomorphology of a particular area by recognizing its landforms. In addition, a synergistic method is used by using data produced from digital elevation models (DEMs) such as Slope, Aspect, Hillshade, Curvature, Contour Patterns, and 3-D Flythrough Visuals. The increasing use of UAV (drone) technology for obtaining high-resolution digital images and elevation models has become an essential element in developing complete topographic models in landslide scars that are very unstable and prone to erosion. Comparison (differences in values) of seven (7) different DEMs between two algorithms used, i.e., QGIS and White Box Tool (WBT), were successfully attempted in the present research. The TLS, UAV and Satellite data of the study area—Kshetrapal Landslide, Chamoli (District), Uttarakhand (State), India was subjected to two different algorithms (QGIS and WBT) to evaluate and differentiate seven different DEMs (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, MERIT, and FabDEM/FATHOM) taking into consideration various parameters viz. Aspect, Hillshade, Slope, Mean Curvature, Plan Curvature, Profile Curvature and Total Curvature. The different values of aforesaid parameters of various DEMs evaluated (using algorithms QIGS and WBT) reveal that only three parameters, i.e., Aspect, Hillshade, and Slope, show results. In contrast, the remaining ones do not show any meaningful results, and therefore, the comparison was possible only with regard to these three parameters. The comparison is drawn by comparing minimum, maximum, and elevation values (by subtracting WBT values from QGIS values) regarding Aspect, Hillshade, and Slope, arranging the differences in values as per their importance. (Increasing or decreasing order), assigning merit scores individually, and then cumulatively, and ascertaining the order of application suitability of various Dems, which stand in the order of (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, and MERIT, and FabDEM/FATHOM).展开更多
基金supported by the Science and Technology Project of Henan Province(No.222102210081).
文摘Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant no.(GPIP:13-612-2024).
文摘App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
文摘Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.
基金Supported by Science and Technology Development Plan Project of Weifang,No.2023YX005。
文摘BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,and short stature.Approximately 60%-70%of patients with CCD have mutations in the RUNX family transcription factor 2 gene.However,prenatal diagnosis of CCD is difficult when the family history is unknown.CASE SUMMARY We report a rare case of fetal CCD with an unknown family history,confirmed by prenatal ultrasonography and genetic testing at a gestational age of 16 weeks.The genetic reports indicated that the fetus carried pathogenic mutations in the RUNX family transcription factor 2 gene(c.674G>A).After careful consideration,the pregnant woman and her family decided to continue the pregnancy.CONCLUSION Definitive prenatal diagnosis of CCD should include family history,ultrasound diagnosis,and genetic analysis,especially if family history is unknown.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
基金Supported by the National College Students’Innovative Entrepreneurial Training Plan Program,No.202410403067the Innovation and Entrepreneurship Training Program for College Students in Jiangxi Province,No.S202410403035.
文摘BACKGROUND Bipolar disorder(BD)is a severe mental illness characterized by significant mood swings.Effective drug treatment modalities are crucial for managing BD.AIM To analyze the current status and future trends of global research on BD drug treatment over the last decade.METHODS The Web of Science Core Collection database spanning from 2015 to 2024 was utilized to retrieve literature related to BD drug treatment.A total of 2624 articles were extracted.Data visualization and analysis were conducted using CiteSpace,VOSviewer,Pajek,Scimago Graphica,and R-studio bibliometrix to identify RESULTS The United States,China,and the United Kingdom have made the most significant contributions to research on BD drug treatment and formed notable research collaboration networks.The University of Pittsburgh,Massachusetts General Hospital,and the University of Michigan have been identified as the major research institutions in this field.The Journal of Affective Disorders is the most influential journal.A keyword analysis revealed research hotspots related to clinical symptoms,drug efficacy,and genetic mechanisms.A citation analysis identified the management guidelines published by Yatham et al in 2018 as the most cited paper.CONCLUSION This study provides a detailed overview of the field of BD drug treatment,highlighting key contributors,research hotspots,and future directions.The study findings can be employed as a reference for future research and policymaking,which may enable further development and optimization of BD pharmacotherapy.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
基金Supported by School-Level Key Projects at Bengbu Medical College,No.2021byzd109.
文摘BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alterations,mechanisms,and signaling pathways underlying gallbladder NEC remain unclear.CASE SUMMARY This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient,who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.Targeted gene sequencing and bioinformatics analysis tools,including STRING,GeneMANIA,Metascape,TRRUST,Sangerbox,cBioPortal and GSCA,were used to analyze the biological functions and features of mutated genes in gallbladder NEC.Twelve mutations(APC,ARID2,IFNA6,KEAP1,RB1,SMAD4,TP53,BTK,GATA1,GNAS,and PRDM3)were identified,and the tumor mutation burden was determined to be 9.52 muts/Mb via targeted gene sequencing.A protein-protein interaction network showed significant interactions among the twelve mutated genes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to assess mutation functions and pathways.The results revealed 40 tumor-related pathways.A key regulatory factor for gallbladder NEC-related genes was identified,and its biological functions and features were compared with those of gallbladder carcinoma.CONCLUSION Gallbladder NEC requires standardized treatment.Comparisons with other gallbladder carcinomas revealed clinical phenotypes,molecular alterations,functional characteristics,and enriched pathways.
基金Partially funded by the National Natural Science Foundation of China(No.51065012)。
文摘The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.
文摘This study aims to clarify the conceptual characteristics of artifact utilization in nursing practice instruction. Five selected articles were analyzed using the concept analysis method by Walker and Avant. The attributes, antecedents, and consequences of the concept were extracted from the target literature. The analysis revealed two attributes (“connecting people to people” and “connecting people to objects”);two antecedents (“recognition of artifacts” and “selection of artifacts”);and two consequences (“designing a fulfilling learning environment” and “improving the quality of education”). The concept was defined as “promoting the utilization of artifacts by recognizing and selecting them, connecting people to people and people to objects, designing a fulfilling learning environment, and improving the quality of education”.
文摘The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.
文摘Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of its value-added products and their profitability in the North-West Region remains underexplored. This study examined the profitability of maize value-added products in Mezam Division, with the objectives to: 1) identify various maize-based products, 2) assess the diversity of these products, 3) conduct a cost-benefit analysis of selected products, 4) examine the relationship between profitability and product diversity, and 5) identify key constraints impacting profitability. To achieve these objectives, structured questionnaires were administered to 500 small-scale maize entrepreneurs randomly selected from five subdivisions. Descriptive statistics were used to analyze objective 1 and 5, while the Shannon Diversity Index was employed to assess product diversity. Additionally, a cost-benefit analysis was conducted on four selected products namely pap, parched corn, peeled parboiled corn, and corn beer, and a correlation analysis was used to examine objective 4. In total, 13 maize value-added products were identified, with a diversity index of 4.4. The total cost of processing the four selected products per entrepreneur using 18 kg of maize per product was FCFA 83631.5 (US $132.75), while the total revenue was FCFA 121864.5 (US $193.43), resulting in an economic profit of FCFA 38,233 (US $60.69). Pap emerged as the most profitable product, with an economic profit of FCFA 27,875 (US $44.24), while corn beer was the least profitable, with an economic profit of FCFA 2133.46 (US $3.39). The correlation analysis revealed a strong negative relationship between product diversity and profitability (r = −0.91), indicating that entrepreneurs can maximize profitability by focusing on a few high-demand products like pap and parched corn. Key constraints to profitability included fluctuating market prices, high production costs, limited access to finance, and inadequate storage facilities. Despite these challenges, our findings indicate that maize value addition is profitable in Mezam Division. Entrepreneurs can leverage this data for informed decision-making and future investments. It is recommended that the government promote maize value addition and provide financial support for modern processing equipment to boost profitability and income generation.
文摘Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range.
文摘Background:Facelift procedures represent a critical area of aesthetic and reconstructive surgery that addresses the physical and psychological impacts of facial aging.Advancements in techniques and technologies over time have transformed the field,making it essential to assess the evolution of research trends.This study performed a bibliometric analysis of facelift research by examining the top 50 most cited publications to evaluate their contributions,thematic evolution,and collaborative networks.Methods:The Scopus database was used to identify relevant publications.A total of 50 documents were selected,comprising 47 articles and 3 reviews published across 16 academic sources.The inclusion criteria focused on publications with substantial relevance to facelift research;this ensured comprehensive coverage of the topic.Key performance indicators(for the authors)such as the number of papers,total citations,h-index,g-index,m-index,HG composite,and Q2 index were calculated.Citation analysis and collaborative network mapping were conducted to identify the leading contributors,including authors,universities,countries,and sources.Results:The findings indicated an annual growth rate of 1.34%,with an average document age of 29.4 years and an average citation count per document of 134.9.The analysis identified the top authors and their collaborative networks,along with key contributions from various universities,countries,and sources.The thematic evolution of facelift research was examined across these 50 papers;this revealed important trends and shifts within the field.Conclusion:This bibliometric analysis offers valuable insights into the development and influence of facelift research over a 52-year span.It highlights significant contributors and outlines thematic shifts,providing directions for future research and collaboration in this field.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.
文摘Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatial, temporal, spectral, and radiometric data, one may get a fresh comprehension of the geomorphology of a particular area by recognizing its landforms. In addition, a synergistic method is used by using data produced from digital elevation models (DEMs) such as Slope, Aspect, Hillshade, Curvature, Contour Patterns, and 3-D Flythrough Visuals. The increasing use of UAV (drone) technology for obtaining high-resolution digital images and elevation models has become an essential element in developing complete topographic models in landslide scars that are very unstable and prone to erosion. Comparison (differences in values) of seven (7) different DEMs between two algorithms used, i.e., QGIS and White Box Tool (WBT), were successfully attempted in the present research. The TLS, UAV and Satellite data of the study area—Kshetrapal Landslide, Chamoli (District), Uttarakhand (State), India was subjected to two different algorithms (QGIS and WBT) to evaluate and differentiate seven different DEMs (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, MERIT, and FabDEM/FATHOM) taking into consideration various parameters viz. Aspect, Hillshade, Slope, Mean Curvature, Plan Curvature, Profile Curvature and Total Curvature. The different values of aforesaid parameters of various DEMs evaluated (using algorithms QIGS and WBT) reveal that only three parameters, i.e., Aspect, Hillshade, and Slope, show results. In contrast, the remaining ones do not show any meaningful results, and therefore, the comparison was possible only with regard to these three parameters. The comparison is drawn by comparing minimum, maximum, and elevation values (by subtracting WBT values from QGIS values) regarding Aspect, Hillshade, and Slope, arranging the differences in values as per their importance. (Increasing or decreasing order), assigning merit scores individually, and then cumulatively, and ascertaining the order of application suitability of various Dems, which stand in the order of (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, and MERIT, and FabDEM/FATHOM).