期刊文献+
共找到38,222篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical Properties of Railway High-strength Manufactured Sand Concrete: Typical Lithology, Stone Powder Content and Strength Grade
1
作者 WANG Zhen LI Huajian +3 位作者 HUANG Fali YANG Zhiqiang WEN Jiaxin SHI Henan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期194-203,共10页
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li... In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed. 展开更多
关键词 manufactured sand concrete RAILWAY mechanical property LITHOLOGY stone powder content
在线阅读 下载PDF
Physical and Chemical Properties and Plant Growth in an Engineered Soil Manufactured from Bauxite Residue, Green Waste Compost and Increasing Amounts of Sand
2
作者 Xinting Weng Richard Haynes Yafeng Zhou 《Open Journal of Soil Science》 2025年第1期70-83,共14页
A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand co... A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand could be used as an ingredient or an amendment for Turba. Sand was added at rates of 0%, 5%, 10%, 25, 50% and 75% (w/w) in two different ways 1) by incorporating it into the Turba during its manufacture (IN) or 2) by mixing it with Turba aggregates after their manufacture (OUT). Incorporation of sand into Turba aggregates (IN) decreased the percentage of sample present as large aggregates (2 - 4 mm dia.) after crushing and sieving (<4 mm) and also reduced the stability of 2 - 4 mm dia. formed aggregates (to dry/wet sieving) and are therefore not recommended. In a 16-week greenhouse study, ryegrass shoot yields were greater in Turba than in sand [and decreased with increasing sand additions (OUT)] while root dry matter showed the opposite trend. The greater grass growth in Turba than sand was attributed to incipit water stress in plants grown in sand and this may have promoted greater allocation of assimilates to roots resulting in a greater root-to-top mass ratio. The much lower macroporosity in Turba coupled with the solid cemented nature of Turba aggregates resulted in production of thinner roots and therefore greater root length than in sand. Turba (manufactured from bauxite residue and compost added at 10% w/w) is a suitable medium for plant growth and there is no advantage in incorporating sand into, or with, the Turba aggregates. 展开更多
关键词 Engineered Soil Manufactured Soil Bauxite Residue Optimized Bauxite Residue sand Ryegrass Growth
在线阅读 下载PDF
Evaluation of the effectiveness of an expressway sand protection system in a gobi region-case study of the Ceke-Ejina expressway,Ejina banner,China
3
作者 Zhengyi Yao Jianhua Xiao +2 位作者 Xixi Ma Jianjun Qu Xuefeng Hong 《International Soil and Water Conservation Research》 2025年第1期177-188,共12页
Sand protection systems are widely used to shelter roads from blowing sand.Therefore,it's very important to evaluate their effectiveness.To provide some insights,we used field investigations,measurements of accumu... Sand protection systems are widely used to shelter roads from blowing sand.Therefore,it's very important to evaluate their effectiveness.To provide some insights,we used field investigations,measurements of accumulated sand,work logs from sand-removal workers,and wind speed data to analyze a system's performance using China's CekeeEjina expressway as a case study.Our results demonstrated that the critical wind speed required to deposit sand on the expressway was 8.6 m s^(-1)(cumulative frequency 12.1%)before implementing the sand protection system.After implementing the system,the critical wind speed required to deposit sand on the road increased to 14.8 m s^(-1)(0.3%).However,the critical wind speed decreased to 11.1 m s^(-1)(3.5%)the next year.Additional work,such as digging ditches,increasing the fence height,and planting shrubs,would help the sand protection system retain its function.Nonetheless,the system continued to function well.The volume of sand removed decreased from ca.10,000 m^(3) in 2015 to ca.100 m^(3) in 2020.Our results quantify the effectiveness of the sand protection system and reveal how its effectiveness decreases over time.They therefore provide an empirical basis for improving the design and maintenance of sand protection systems. 展开更多
关键词 Gobi region sand removal sand protection system sand trapping effectiveness
原文传递
Prediction of intrusive gas pores caused by resin burning in sand core for iron castings
4
作者 Ji-wu Wang Xiao-long Wang +8 位作者 Yu-cheng Sun Yu-hang Huang Xiu-ming Chen Xiong-zhi Wu Na Li Jin-wu Kang Tao Jing Tian-you Huang Hai-liang Yu 《China Foundry》 2025年第1期23-32,共10页
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur... In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings. 展开更多
关键词 gas pore numerical simulation iron casting sand core RESIN
在线阅读 下载PDF
Mechanical behavior of EICP-treated calcareous sands under high confining pressures
5
作者 Qian Zhang Weimin Ye +2 位作者 Wei Su Qiong Wang Yonggui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1816-1827,共12页
Calcareous sands are widely distributed on the coral reefs,continental shelf,and seashores between 30north and south latitude and are commonly utilized as filling materials for the construction of artificial islands a... Calcareous sands are widely distributed on the coral reefs,continental shelf,and seashores between 30north and south latitude and are commonly utilized as filling materials for the construction of artificial islands and infrastructure foundations.In this study,calcareous sands were cemented by enzymatically induced carbonate precipitation(EICP)technique.Drained triaxial tests were conducted on the EICPtreated calcareous sands.Results showed that the specimens with different cementation levels exhibited different responses in mechanical behavior.The differences in the sand fabric after consolidation under a relatively high confining pressure resulted in the untreated specimen exhibiting a higher peak strength compared to the lightly cemented specimen.High confining pressures exhibited a strongly inhibiting effect on dilatancy,which could be counteracted by increasing the cementation level.The EICP-treated specimen could have one or two yield points(smaller-strain and larger-strain yields).For lightly cemented specimens,the smaller-strain yield stress decreased under high confining pressures due to the partial carbonate bonding degradation during consolidation.The stress line of untreated particle breakage(UPB)was a critical boundary to distinguish failure mode in the p′-q space.For the EICP-treated specimens,the yield stress located above or below the UPB stress line indicates the simultaneous or sequential breakage of the carbonate bonds and sand particles,respectively.Accordingly,the EICPtreated specimen exhibited brittle or ductile properties.Failure mode transformation could be triggered by increasing cementation level or confining pressure. 展开更多
关键词 EICP technique Calcareous sand Bonding degradation Yield strength Failure mechanism
在线阅读 下载PDF
Sand body architecture of braided river deltas in the Upper Triassic Xujiahe Formation, Sichuan Basin
6
作者 Yanqing Huang Meizhou Deng +5 位作者 Nan Duan Wujun Jin Junlong Liu Na Niu Ai Wang Xiaolin Lu 《Energy Geoscience》 2025年第1期89-100,共12页
The recent discovery of natural gas within the fifth member of the Xujiahe Formation(T_(3)x_(5))in the Dongfeng area within the Sichuan Basin highlights the significant exploration potential of this member.However,the... The recent discovery of natural gas within the fifth member of the Xujiahe Formation(T_(3)x_(5))in the Dongfeng area within the Sichuan Basin highlights the significant exploration potential of this member.However,the unconvincing previous understanding of the sedimentary microfacies,combined with a total lack of studies on the sand body architecture and reservoir distribution,hampers the further exploration of this member.Using core data,log curves,and seismic data,along with sedimentary microfacies analysis,this study investigated the interfaces between the sand bodies of various scales in the Dongfeng area.Furthermore,this study explored the morphological characteristics,types,and stacking patterns of these sand bodies and determined the distributions of sand bodies and reservoirs in the area.The results indicate that the first sand group of the T_(3)x_(5) member(T_(3)x^(1)_(5))exhibits delta-front deposits,including subaqueous distributary channels,sheet sands,and interdistributary bays.Seven levels of sand body interfaces are identified in the T_(3)x^(1)_(5) sand group.Among them,the interfaces of the first and second levels were identifed only in cores,those of the third and fourth levels were recog-nizable from cores combined with log curves,while those of the fifth,sixth,and seventh levels were distinguishable using seismic data.Three superimposed subaqueous distributary channel complexes are found in the Dongfeng area.Among them,complex 1 in the northwest exhibits the strongest water body energy,while complex 2 in the south displays the weakest.Complex 2 was formed earlier than com-plexes 1 and 3.Also,complex 1 is further subdivided into three vertically stacked subaqueous distrib-utary channels.The subdivision of sedimentary microfacies in the T_(3)x_(5) member reveals nine lithofacies types.Among them,stacked pancake-shaped,carbonaceous debris-bearing,massive,and cross-bedded medium-grained sandstones are considered favorable lithofacies.These four lithofacies types exhibit high porosity,as well as low natural gamma-ray(GR)values,low-to-medium deep investigate double lateral resistivity(RD),and high interval transit time(AC)on the log curves.Additionally,the reservoir distribution in the Dongfeng area was delineated based on the characterization of the favorable lith-ofacies.This study serves as a guide for future exploration and evaluation of the T_(3)x_(5) member in the Dongfeng area while also augmenting the methodologies for describing tight sandstone reservoirs. 展开更多
关键词 sand body architecture Favorable lithofacies Xujiahe Formation Upper Triassic Sichuan Basin
在线阅读 下载PDF
Micromechanical analysis of particle corner effect on bearing and deformation behaviors of coral sand slope foundation under a strip footing
7
作者 PENG Yu LUO Zhao-gang +2 位作者 HE Shao-heng QU Li-ming DING Xuan-ming 《Journal of Central South University》 2025年第2期624-642,共19页
To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati... To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials. 展开更多
关键词 micromechanical analysis coral sand slope foundation particle corner breakage corner interlock
在线阅读 下载PDF
Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes
8
作者 Yorick FENNER Martin BELLMANN +1 位作者 Andreas TUMMEL Christoph GERHARD 《Plasma Science and Technology》 2025年第1期111-117,共7页
Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders ... Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption.Even though desert sand is sufficiently available,it is not usable for realizing stable concrete due to its surface shape.Against this background,the suitability of energy-efficient‘cold'dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution.It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains.As a result,the mass flow of treated sand is decreased due to an improved wedging of sand grains.This leads to a certain increase in compressive strength of concrete samples.Even though this increase is marginal,the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven,showing its basic potential for the treatment and preconditioning of sand used for concrete,mortar or plastering. 展开更多
关键词 plasma treatment atmospheric pressure plasma sand CONCRETE surface roughening mass flow compressive strength
在线阅读 下载PDF
Interrelation between compressibility and permeability of reconstituted sandy clays with different sand fractions
9
作者 Mengying Gao Junjun Ni Zhenshun Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2461-2473,共13页
It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability a... It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability and compressibility of reconstituted sandy clays by considering the structural effects of sand particles is still rarely reported.For this,a series of consolidation-permeability coefficient tests were conducted on reconstituted sandy clays with different sand fractions(ψ_(ss)),initial void ratio of hosted clays(e_(c0))and void ratio at liquid limit of hosted clays(e_(cL)).The roles of ψ_(ss) in both the relationships of permeability coefficient of hosted clay(k_(v-hosted clay))versus effective vertical stress(σ'_(v))and void ratio of hosted clay(e_(c-hosted clay))versus σ'_(v) were analyzed.The results show that the permeability coefficient of reconstituted sandy clays(k_(v))is dominated by hosted clay(k_(v)=k_(v-hosted clay)).Both ψ_(ss) and σ'_(v) affect the k_(v) of sandy clays by changing the e_(c-hosted clay) at any given σ'_(v).Due to the partial contacts and densified clay bridges between the sand particles(i.e.structure effects),the e_(c-hosted clay) in sandy clays is higher than that in clays at the same σ'_(v)v.The k_(v)-e_(c-hosted clay) relationship of sandy clays is independent of σ'_(v) and ψ_(ss)but is a function of e_(cL).The types of hosted clays affect the k_(v) of sandy clays by changing the e_(cL).Based on the relationship between permeability coefficient and void ratio for the reconstituted clays,an empirical method for determining the k_(v) is proposed and validated for sandy clays.The predicted values are almost consistent with the measured values with k_(v-predicted)=k_(v-measured)=0.6-2.5. 展开更多
关键词 Reconstituted clays sand fractions sandy clays Consolidation-permeability coefficient tests Void ratio of hosted clay Permeability coefficient
在线阅读 下载PDF
Effects of bacterial strains on undrained cyclic behavior of bio-cemented sand considering wetting and drying cycles
10
作者 Nilanjana Banik Rajib Sarkar 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期432-452,共21页
The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated s... The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated sand has not been well established in the literature considering cyclic loading under undrained conditions.Furthermore,the efficacy of different bacterial strains in enhancing the cyclic properties of MICP-treated sand has not been sufficiently documented.Moreover,the effect of wetting-drying(WD)cycles on the cyclic characteristics of MICP-treated sand is not readily available,which may contribute to the limited adoption of MICP treatment in field applications.In this study,strain-controlled consolidated undrained(CU)cyclic triaxial testing was conducted to evaluate the effects of MICP treatment on standard Ennore sand from India with two bacterial strains:Sporosarcina pasteurii and Bacillus subtilis.The treatment durations of 7 d and 14 d were considered,with an interval of 12 h between treatments.The cyclic characteristics,such as the shear modulus and damping ratio,of the MICP-treated sand with the different bacterial strains have been estimated and compared.Furthermore,the effect of WD cycles on the cyclic characteristics of MICP-treated sand has been evaluated considering 5–15 cycles and aging of samples up to three months.The findings of this study may be helpful in assessing the cyclic characteristics of MICP-treated sand,considering the influence of different bacterial strains,treatment duration,and WD cycles. 展开更多
关键词 Bio-cemented sand Microbial-induced calcite precipitation(MICP)treatment Consolidated undrained(CU)cyclic triaxial testing Cyclic characteristics Wetting-drying(WD)cycles
在线阅读 下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
11
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
在线阅读 下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
12
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
在线阅读 下载PDF
Protective benefit of folded linear HDPE board sand fences along the Golmud-Korla Railway,China:Field observation and wind tunnel study 被引量:1
13
作者 ZHANG Kai TIAN Jianjin +2 位作者 WANG Zhenghui ZHANG Hailong ZHANG Xingxin 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2206-2219,共14页
The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introdu... The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introduced a novel sand fence deployment technique,termed‘folded linear deployment',designed to position the sand fence orthogonally to the two predominant wind directions for optimal protection.This study used wind tunnel and field tests to evaluate the wind and sand flow characteristics,as well as the windproof and sandresistant performance of folded linear HDPE(Highdensity polyethylene)board sand fences.The results suggest that the airflow around the fence creates clear zoning characteristics.The deceleration area on the BSF(backwind side of the sand fence)is much larger than that on the DSF(downwind side of the sand fence).Thus,sand particles are primarily deposited on the BSF.At different wind speeds,the airflow at 2 and 5 h on the DSF is not disturbed.The WSP(wind speed profile)presents a logarithmic distribution.The airflow is disturbed at 1-20 h on the BSF,and the WSP gradually deviates from the logarithmic law.However,as the airflow moves away from the fence,the WSP gradually approaches a logarithmic distribution.Meanwhile,the WPE(windproof efficiency)and SRE(sand-resistant efficiency)of the sand fence exceed 80%.In addition,the results of wind tunnel tests are compared with those of field tests.The overall dispersion is good,and the best dispersion is found at z/H=2.00,indicating good agreement between the two test results.This study provides a scientific basis for the design of sand hazard control measures,similar to the railway project in the Gobi Gale area. 展开更多
关键词 Folded linear HDPE board sand fence Double wind direction Gobi area Protection benefit
在线阅读 下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
14
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
在线阅读 下载PDF
Experimental and simulation research on hollow AZ31 magnesium alloy three-channel joint by hot extrusion forming with sand mandrel 被引量:1
15
作者 Shi Shengnan Wang Hongyu +4 位作者 Teng Fei Jiang Lei Sun Juncai Sun Jie Zhang Shunhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期98-109,共12页
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho... Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner. 展开更多
关键词 AZ31 magnesium alloy Three-channel joint sand Experiments and the finite element Die angle
在线阅读 下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia 被引量:1
16
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
在线阅读 下载PDF
基于P2PSand模型的水库土石坝坝基地震液化影响分析 被引量:2
17
作者 牛金帝 张西文 +2 位作者 吕颖慧 邱宇 扈萍 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第2期177-183,共7页
为了解决水库土石坝坝基地震液化导致严重坝体变形和边坡失稳等灾害,从而对水库土石坝长效安全运行造成严重威胁的问题,以某水库土石坝为例,利用有限差分软件FLAC3D 7.0及其内置P2PSand模型(practical two-surface plastic sand model)... 为了解决水库土石坝坝基地震液化导致严重坝体变形和边坡失稳等灾害,从而对水库土石坝长效安全运行造成严重威胁的问题,以某水库土石坝为例,利用有限差分软件FLAC3D 7.0及其内置P2PSand模型(practical two-surface plastic sand model),对存在地震液化地基的水库土石坝进行地震动力响应分析。结果表明:地震强度与相对密实度对水库土石坝坝基地震液化趋势影响较大,超孔压比随着地震过程的进行而逐渐增大,增大幅度约为10.46%;随着坝基地震液化程度的提高,坝体变形更明显,并且坝基边坡稳定性劣化。 展开更多
关键词 水库土石坝 地震液化 P2Psand模型 边坡稳定性
在线阅读 下载PDF
Effect analysis of biomineralization for solidifying desert sands 被引量:3
18
作者 Linchang Miao Hengxing Wang +2 位作者 Xiaohao Sun Linyu Wu Guangcai Fan 《Biogeotechnics》 2024年第1期45-52,共8页
The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands ... The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands has been developed as a novel method in recent years.In this study,the wind erosion tests and verification tests of the sand solidification system were conducted via a series of laboratory experiments.The effects of sand barriers,injecting volume and concentration of the biochemical solution in the sandstorm protection were studied.Moreover,a field test of 60,000 square metres was conducted in the solidification area on both sides of the Wuma Highway in the Tengri Desert.The biomineralization technique was used to solidify sand to prevent the wind from blowing quicksand onto the newly built highway and causing accidents.Results demonstrated that the biomineralization sand solidification method had a good solidification==effect,improved the survival rate,and promoted the growth of plants in the desert.This innovative biomineralization technology is an environmentally responsible technology to control sandstorm disasters. 展开更多
关键词 DESERTIFICATION UREASE Solidification desert sand of biomineralization Combined solidification desert sand
在线阅读 下载PDF
Protective benefits of HDPE board sand fences in an environment with variable wind directions on Gobi surfaces:wind tunnel study
19
作者 ZHANG Kai TIAN Jianjin +4 位作者 LIU Benli ZHAO Yanhua ZHANG Hailong WANG Zhenghui DENG Yuhui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3353-3367,共15页
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot... The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions. 展开更多
关键词 Variable wind directions Blown sand control Wind tunnel tests HDPE board sand fences
在线阅读 下载PDF
Sand control mechanism of radial well filled with phase change material in hydrate reservoir
20
作者 Xiao-Qiang Liu Zhong-Xi Han +5 位作者 Zhi-Lin Luo Hai-Long Lu Ying Sun Qing You Tian-Kui Guo Zhan-Qing Qu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2571-2582,共12页
Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the ... Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles. 展开更多
关键词 Hydrate reservoir sand control Radial well CFD-DEM
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部