期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
1
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery state of health estimation Feature extraction Graph convolutional network Long short-term memory network
在线阅读 下载PDF
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression 被引量:1
2
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble Gaussian process regression(EGPR) state of health(soh) health indicators(HIs) gannet optimization algorithm(GOA)
在线阅读 下载PDF
Boosting battery state of health estimation based on self-supervised learning 被引量:3
3
作者 Yunhong Che Yusheng Zheng +1 位作者 Xin Sui Remus Teodorescu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期335-346,共12页
State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to ac... State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios. 展开更多
关键词 Lithium-ion battery state of health Battery aging Self-supervised learning Prognostics and health management Data-driven estimation
在线阅读 下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
4
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) Long Short-Term Memory (LSTM) Network state of health (soh) estimation
在线阅读 下载PDF
一种并行多尺度特征融合模型开展的基于弛豫电压的锂电池SOH估计研究
5
作者 王海瑞 徐长宇 +1 位作者 朱贵富 侯晓建 《储能科学与技术》 北大核心 2025年第2期799-811,共13页
锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种... 锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。 展开更多
关键词 锂离子电池 健康状态估计 弛豫电压 并行多尺度特征 特征融合
在线阅读 下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach 被引量:2
6
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(soh)
在线阅读 下载PDF
Lithium battery state of charge and state of health prediction based on fuzzy Kalman filtering 被引量:1
7
作者 Daniil Fadeev ZHANG Xiao-zhou +2 位作者 DONG Hai-ying LIU Hao ZHANG Rui-ping 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期63-69,共7页
This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The m... This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%. 展开更多
关键词 lithium battery state of charge(SOC) state of health(soh) adaptive extended Kalman filter(AEKF)
在线阅读 下载PDF
贝叶斯正则化优化BP神经网络估算SOH
8
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(soh) 贝叶斯正则化算法 反向传播(BP)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于两阶段充电数据融合的储能系统锂离子电池SOH估计方法
9
作者 范元亮 朱俊伟 +3 位作者 吴涵 韩晓岚 黄兴华 陈金玉 《电气传动》 2025年第3期72-80,共9页
准确估计锂离子电池的健康状态(SOH)对于优化储能系统的运行、管理和维护至关重要。现有从单阶段充电数据提取健康特征的方法,不能充分挖掘电池老化信息,不利于提高估计精度。针对该问题,提出了一种基于两阶段充电数据融合的储能系统锂... 准确估计锂离子电池的健康状态(SOH)对于优化储能系统的运行、管理和维护至关重要。现有从单阶段充电数据提取健康特征的方法,不能充分挖掘电池老化信息,不利于提高估计精度。针对该问题,提出了一种基于两阶段充电数据融合的储能系统锂离子电池SOH估计方法。通过融合恒压充电阶段与弛豫阶段的健康特征,充分挖掘两阶段充电数据包含的电池老化信息,提高了SOH估计精度。同时,所提出的健康特征组合无需使用恒流充电阶段数据,因此不受充电起始点不确定性的影响,更加适应储能实际工况。实验结果表明,所提出健康特征组合的SOH估计精度明显优于单阶段特征组合,绝对误差平均值为0.66%,均方误差平均值为0.85%,决定系数平均值为0.97。 展开更多
关键词 锂离子电池 健康状态估计 两阶段特征融合
在线阅读 下载PDF
长期浮充状态下铅酸电池的SOC和SOH监测
10
作者 朱杰 张金生 顾剑锋 《流体测量与控制》 2025年第2期36-39,共4页
随着能源存储技术的持续发展,铅酸电池在多个领域,尤其是需求稳定电源的场景中,扮演着举足轻重的角色。在长期浮充使用情境下,精准监测铅酸电池的荷电状态(SOC)和健康状态(SOH)至关重要。本文聚焦于长期浮充状态下的铅酸电池,深入探讨其... 随着能源存储技术的持续发展,铅酸电池在多个领域,尤其是需求稳定电源的场景中,扮演着举足轻重的角色。在长期浮充使用情境下,精准监测铅酸电池的荷电状态(SOC)和健康状态(SOH)至关重要。本文聚焦于长期浮充状态下的铅酸电池,深入探讨其SOC与SOH的监测技术,剖析当前方法的优势与局限,并针对现存挑战提出优化策略,旨在为电池管理领域的专业人士提供有益的参考与指导。 展开更多
关键词 铅酸电池 浮充状态 荷电状态(SOC) 健康状态(soh)
在线阅读 下载PDF
基于多特征组合的锂离子电池SOH估计
11
作者 吴涵 黄兴华 +3 位作者 乔振东 范元亮 朱俊伟 陈金玉 《电气传动》 2025年第1期25-32,40,共9页
准确估计锂离子电池的健康状态(SOH)是保证储能系统安全稳定运行的重要前提。提高SOH估计精度的关键在于合理选择能够反映锂离子电池SOH的健康特征。通过分析锂离子电池恒压充电阶段的电流特性,从恒压充电阶段电流曲线数据中提取了包含... 准确估计锂离子电池的健康状态(SOH)是保证储能系统安全稳定运行的重要前提。提高SOH估计精度的关键在于合理选择能够反映锂离子电池SOH的健康特征。通过分析锂离子电池恒压充电阶段的电流特性,从恒压充电阶段电流曲线数据中提取了包含电流曲线首末点斜率、标准差和平均值的健康特征组合。为验证所提出特征组合的有效性,设计了基于核岭回归(KRR)和支持向量回归(SVR)的SOH估计模型,并完成了模型验证。实验结果表明,所提特征组合在不同模型下均能实现对SOH的高精度估计,具有良好的模型适应性。 展开更多
关键词 锂离子电池 健康状态估计 恒压充电阶段 核岭回归 支持向量回归
在线阅读 下载PDF
Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine
12
作者 LI Qingwei FU Can +2 位作者 XUE Wenli WEI Yongqiang SHEN Zhiwen 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期252-261,共10页
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t... To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability. 展开更多
关键词 lithium-ion battery state of health(soh) extreme learning machine(ELM) differential evolution(DE)algorithm
原文传递
基于迁移学习与GRU神经网络结合的锂电池SOH估计 被引量:2
13
作者 莫易敏 余自豪 +2 位作者 叶鹏 范文健 林阳 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期233-239,共7页
为解决退役电池梯次利用过程中单体剩余使用寿命估计困难、测试流程复杂与能耗高等问题,提出迁移学习与GRU网络结合的锂离子电池健康状态估计方法;设计的基础模型结构为输入层+GRU层+全连接层+输出层;根据健康因子的得分,选择训练基础... 为解决退役电池梯次利用过程中单体剩余使用寿命估计困难、测试流程复杂与能耗高等问题,提出迁移学习与GRU网络结合的锂离子电池健康状态估计方法;设计的基础模型结构为输入层+GRU层+全连接层+输出层;根据健康因子的得分,选择训练基础模型的数据集、划分电池相似度等级并制定对应的迁移学习策略。实验结果表明:与其他模型相比,分别使用数据集的前40%与前25%训练得到的基础模型与迁移学习模型,两者的精度分别最大提高42.48%与95.28%,而预测稳定性分别最大提高55.38%与93.55%。 展开更多
关键词 机器学习 迁移学习 锂电池 门控循环单元神经网络 健康状态估计
在线阅读 下载PDF
考虑改进粒子滤波SOH预测与经济优化的电动汽车集群调频策略
14
作者 孙英 肖龙坤 +2 位作者 王天奕 任博凯 张磊 《电力系统及其自动化学报》 CSCD 北大核心 2024年第12期54-65,共12页
为应对电动汽车电池老化给电力系统带来的调频稳定性降低与成本升高等严峻挑战,提出考虑改进粒子滤波健康状态预测与经济优化的电动汽车集群调频策略。首先,基于蒙特卡罗与贝叶斯滤波原理,利用边界约束与指数罚函数通过改进粒子滤波预... 为应对电动汽车电池老化给电力系统带来的调频稳定性降低与成本升高等严峻挑战,提出考虑改进粒子滤波健康状态预测与经济优化的电动汽车集群调频策略。首先,基于蒙特卡罗与贝叶斯滤波原理,利用边界约束与指数罚函数通过改进粒子滤波预测健康状态并重构电动汽车集群;其次,根据荷电状态与健康状态,结合比例-积分控制器,搭建集群变频率特征系数控制模型并引入系统调度模型;然后,以频率偏差与经济成本为目标函数优化调度指令;最后,仿真验证所提策略对降低调频偏差与经济成本都有良好效果,实现了电动汽车资源高效利用。 展开更多
关键词 电动汽车 调频策略 健康状态 改进粒子滤波 荷电状态 经济优化
在线阅读 下载PDF
基于EKF算法的纯电动汽车锂电池SOC与SOH联合估算 被引量:3
15
作者 李煜 蔡玉梅 +2 位作者 曾凯 马仪 李茂盛 《邵阳学院学报(自然科学版)》 2024年第2期45-55,共11页
为提高对动力电池的荷电状态(state of charge, SOC)估算精度、动力电池的健康状态(state of health, SOH)对锂电池性能的影响,提出一种扩展卡尔曼滤波(extended kalman filtering, EKF)联合估算算法。根据现有的实验数据,分析锂电池特... 为提高对动力电池的荷电状态(state of charge, SOC)估算精度、动力电池的健康状态(state of health, SOH)对锂电池性能的影响,提出一种扩展卡尔曼滤波(extended kalman filtering, EKF)联合估算算法。根据现有的实验数据,分析锂电池特性,构建二阶RC等效电路模型,并进行参数辨识,搭建MATLAB仿真平台联合EKF算法进行SOC估算,将仿真结果与真实数据进行对比,结果表明,EKF联合估算SOC比EKF估算SOC误差精度约高1.2%,且抗干扰能力更强。 展开更多
关键词 EKF算法 锂电池 荷电状态 健康状态 估算
在线阅读 下载PDF
基于ICA的锂电池SOH估计曲线确定方法研究 被引量:2
16
作者 王晗蕊 陈则王 徐肇凡 《电机与控制应用》 2024年第2期71-79,共9页
针对如何提取容量增量(IC)曲线上更有效的特征参数进行锂电池健康状态(SOH)估计问题,提出了一种基于修正的洛伦兹电压容量(RL-VC)模型。首先使用传统滤波方法对锂电池进行容量增量分析(ICA)。然后使用RL-VC模型进行对比,获得相应的特征... 针对如何提取容量增量(IC)曲线上更有效的特征参数进行锂电池健康状态(SOH)估计问题,提出了一种基于修正的洛伦兹电压容量(RL-VC)模型。首先使用传统滤波方法对锂电池进行容量增量分析(ICA)。然后使用RL-VC模型进行对比,获得相应的特征参数并计算容量建模误差。在基于自主搭建的试验平台上获得的试验数据与开源数据集NASA中的动态数据集NCM中分别进行试验。VC容量建模的误差分别在0.23%和0.16%以内。RL-VC模型拟合的IC曲线提取的特征参数与锂电池容量高度线性相关,为后续SOH工作奠定了基础。基于RL-VC模型的IC分析方法相较于传统滤波方法,不仅在电池老化方面具有更高的鲁棒性,同时在特征参数提取方面避免了主观性和不确定性。 展开更多
关键词 锂电池 健康状态估计 IC曲线 容量增量分析
在线阅读 下载PDF
基于非参数模型与粒子滤波的锂电池SOH估计 被引量:2
17
作者 贺宁 杨紫琦 钱成 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期148-159,共12页
健康状态(state of health,SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,... 健康状态(state of health,SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,提出了一种基于模糊熵和粒子滤波(particle filter,PF)的锂离子电池SOH估计方法。首先,通过分析电池老化过程中的放电电压数据,提取模糊熵值作为电池的老化特征;其次,基于代谢灰色模型(metabolic grey model,MGM)和时间卷积网络(temporal convolutional network,TCN)构建描述锂电池老化特征的非参数状态空间模型;最后,通过PF实现锂电池SOH的闭环估计。此外,利用NASA锂电池数据集对所提出的SOH估计方法进行了验证,并与该领域其他方法进行对比实验。结果表明,所提方法最大估计误差在5%左右,相比于同类方法其估计精度提升了约50%,且在不同训练周期数条件下表现出较好的鲁棒性,验证了所提方法的可行性与优越性。 展开更多
关键词 锂离子电池 健康状态估计 模糊熵 粒子滤波 闭环估计
在线阅读 下载PDF
基于特征多项式与改进鲸鱼算法的电池SOH预测
18
作者 闫羲 赖强 +2 位作者 戴晓强 李奇 鄢然 《船舶工程》 CSCD 北大核心 2024年第11期105-112,共8页
锂电池作为新能源船舶系统的核心设备,对其健康状态(SOH)进行准确预测有利于系统能量管理和船舶安全运行。为提高电池SOH的预测精度,提出一种多健康特征(MHF)融合和改进鲸鱼优化算法(IWOA)相结合的预测方法。在传统支持向量回归作为预... 锂电池作为新能源船舶系统的核心设备,对其健康状态(SOH)进行准确预测有利于系统能量管理和船舶安全运行。为提高电池SOH的预测精度,提出一种多健康特征(MHF)融合和改进鲸鱼优化算法(IWOA)相结合的预测方法。在传统支持向量回归作为预测方法的基础上,通过皮尔逊分析法选取4个典型健康特征(HF),采用加权方法构建融合多个HF的多项式模型。考虑到特征的权值系数和SVR的惩罚系数C、核参数δ以及最大误差ε的取值对预测精度的影响,使用IWOA对模型中的权值系数以及3个超参数进行联合寻优。仿真结果表明,所提出的MHF-IWOA-SVR方法具有更高的预测精度与拟合度,预测误差基本保持在±0.5%以内。 展开更多
关键词 健康特征(HF) 支持向量回归 改进鲸鱼优化算法(IWOA) 健康状态(soh)
原文传递
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
19
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习机 健康状态在线估计
在线阅读 下载PDF
Transfer learning from synthetic data for open-circuit voltage curve reconstruction and state of health estimation of lithium-ion batteries from partial charging segments 被引量:1
20
作者 Tobias Hofmann Jacob Hamar +2 位作者 Bastian Mager Simon Erhard Jan Philipp Schmidt 《Energy and AI》 EI 2024年第3期80-97,共18页
Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state ... Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state of health(SOH)estimation.This study addresses this issue by developing a transfer-learning-based OCV reconstruction model using a temporal convolutional long short-term memory(TCN-LSTM)network trained on synthetic data from an automotive nickel cobalt aluminium oxide(NCA)cell generated through a mechanistic model approach.The data consists of voltage curves at constant temperature,C-rates between C/30 to 1C,and a SOH-range from 70%to 100%.The model is refined via Bayesian optimization and then applied to four use cases with reduced experimental nickel manganese cobalt oxide(NMC)cell training data for higher use cases.The TL models’performances are compared with models trained solely on experimental data,focusing on different C-rates and voltage windows.The results demonstrate that the OCV reconstruction mean absolute error(MAE)within the average battery electric vehicle(BEV)home charging window(30%to 85%state of charge(SOC))is less than 22 mV for the first three use cases across all C-rates.The SOH estimated from the reconstructed OCV exhibits an mean absolute percentage error(MAPE)below 2.2%for these cases.The study further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets,a lithium iron phosphate(LFP)cell and an entirely artificial,non-existing,cell,showing that solely the shifting and scaling of gradient changes in the charging curve suffice to transfer knowledge,even between different cell chemistries.A key limitation with respect to extrapolation capability is identified and evidenced in our fourth use case,where the absence of such comprehensive data hindered the TL process. 展开更多
关键词 Lithium-ion battery state of health estimation Transfer learning OCV curve Partial charging Synthetic data
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部