Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting.It is proposed that a promising strategy effectively regulates the electronic structure ...The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting.It is proposed that a promising strategy effectively regulates the electronic structure of the d-orbitals of CoP using cerium doping in this paper,thus significantly improving the intrinsic property and conductivity of CoP for water splitting.As a result,the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),overpotentials of about 152 mV for HER at 10 mA cm^(-2)and about 352 mV for OER at 50 mA cm^(-2),and especially it shows outstanding long-term stability.Besides,an alkaline electrolyzer,using Ce0.04Co0.96P electrocatalyst as both the anode and cathode,delivers a cell voltage value of1.55 V at the current density of 10 mA cm^(-2).The calculation results of the density functional theory(DFT)demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity,and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O*intermediates(CoOOH),which exhibits an excellent electrocatalytic performance.This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.展开更多
Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water spli...Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water splitting stands out as a promising approach for direct solar-driven hydrogen production.Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research.Tantalum nitride(Ta_(3)N_(5)),with its suitable band gap and band-edge positions for PEC water splitting,has emerged as a highly promising photoanode material.This review begins by introducing the history and fundamental characteristics of Ta_(3)N_(5),emphasizing both its advantages and challenges.It then explores methods to improve light absorption efficiency,charge separation and transfer efficiency,surface reaction rate,and the stability of Ta_(3)N_(5) photoanodes.Additionally,the review discusses the progress of research on tandem PEC cells incorporating Ta_(3)N_(5) photoanodes.Finally,it looks ahead to future research directions for Ta_(3)N_(5) photoanodes.The strategic approach outlined in this review can also be applied to other photoelectrode materials,providing guidance for their development.展开更多
This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abun...This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.展开更多
Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to th...Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and...Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.展开更多
Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attentio...Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described.展开更多
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De...Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.展开更多
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to...Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts.展开更多
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio...Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.展开更多
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1...In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.展开更多
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he...The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.展开更多
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable e...Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable energy systems that exhibit exceptional activity, selectivity, stability, and economic viability. The utilization of metal oxides as electrocatalysts for the process of water splitting has made substantial progress in both theoretical and practical aspects and has emerged as a widely explored field of research. Tungsten oxides(WO_(x)) have attracted much attention and are regarded as a highly promising electrocatalytic material due to their exceptional electrocatalytic activity, cost-effectiveness, and ability to withstand extreme conditions. This review introduces the fundamental mechanism of WOx-based electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction, providing a comprehensive overview of recent research advancements in their modification. Factors contributing to the catalytic activity and stability of WOxare explored, highlighting their potential for industrial applications. The aim herein is to provide guidelines for the design and fabrication of WOx-based electrocatalysts, thereby facilitating further research on their mechanistic properties and stability improvements in water splitting.展开更多
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OE...This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)in alkaline media.Specifically,the nitrogen-doped carbon nanofiber-supported Ni-doped CoP_(3) with rich P defects(Pv·)on the carbon cloth(p-NiCoP/NCFs@CC)is synthesized through a plasma-assisted phosphorization method.The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER.It only needs overpotentials of 107 and 306 mV to drive 100 mA cm^(-2) for the HER and the OER,respectively.Its catalytic activities are higher than those of other catalysts reported recently.The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features.The density functional theory calculation indicates that the Pv·richness,the Ni doping,and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process.This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER.When used in alkaline water electrolyzers,the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.展开更多
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy...Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.展开更多
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
基金supported by the National Natural Science Foundation of China(No.12162023&52268042)Key R&D Program of Gansu Province-International Cooperation Project(No.20YF8WA064)Natural Science Foundation of Gansu Province(No.22JR5RA253).
文摘The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting.It is proposed that a promising strategy effectively regulates the electronic structure of the d-orbitals of CoP using cerium doping in this paper,thus significantly improving the intrinsic property and conductivity of CoP for water splitting.As a result,the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),overpotentials of about 152 mV for HER at 10 mA cm^(-2)and about 352 mV for OER at 50 mA cm^(-2),and especially it shows outstanding long-term stability.Besides,an alkaline electrolyzer,using Ce0.04Co0.96P electrocatalyst as both the anode and cathode,delivers a cell voltage value of1.55 V at the current density of 10 mA cm^(-2).The calculation results of the density functional theory(DFT)demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity,and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O*intermediates(CoOOH),which exhibits an excellent electrocatalytic performance.This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.
文摘Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water splitting stands out as a promising approach for direct solar-driven hydrogen production.Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research.Tantalum nitride(Ta_(3)N_(5)),with its suitable band gap and band-edge positions for PEC water splitting,has emerged as a highly promising photoanode material.This review begins by introducing the history and fundamental characteristics of Ta_(3)N_(5),emphasizing both its advantages and challenges.It then explores methods to improve light absorption efficiency,charge separation and transfer efficiency,surface reaction rate,and the stability of Ta_(3)N_(5) photoanodes.Additionally,the review discusses the progress of research on tandem PEC cells incorporating Ta_(3)N_(5) photoanodes.Finally,it looks ahead to future research directions for Ta_(3)N_(5) photoanodes.The strategic approach outlined in this review can also be applied to other photoelectrode materials,providing guidance for their development.
基金National Programs for NanoKey Project(2022YFA1504002)National Natural Science Foundation of China(22078233)。
文摘This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.
基金supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization(NEDO),the JST Fusion Oriented Research for disruptive Science and Technology Program(JPMJFR213D)JSPS KAKENHI(JP24K17774)Domen for his guidance during their PhD studies at the University of Tokyo,as well as for his ongoing support,encouragement,and mentorship.
文摘Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by the Natural Science Founda-tion of Chongqing(cstc2021jcyj-msxmX0420)Natural Science Foundation of Sichuan(2023NSFSC0088)。
文摘Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.
基金financially supported by the Science Foundation of Donghai Laboratory (Grant No.DH-2022ZY0010)the R&D Project of State Grid Corporation of China (No.5108-202218280A-2-439-XG).
文摘Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described.
基金National Natural Science Foundation of China,Grant/Award Number:52271200Scientific and Technological Innovation Foundation of Foshan,Grant/Award Number:BK20BE009+1 种基金the Fundamental Research Funds for the Central Universities,Grant/Award Number:FRF-TP-18-079A1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110460,ORCID:http://orcid.org/0000-0002-0870-2248。
文摘Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
基金financially supported by the National Natural Science Foundation of China(21975100).
文摘Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts.
基金supported by the National Natural Science Foundation of China(No.22209126)。
文摘Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.
基金supported by the National Natural Science Foundation of China(Nos.42074053 and 42374079)the Fundamental Research Funds from the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B30 and JY2022Z02).
文摘In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020zD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059.
文摘The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
基金supported by the National Natural Science Foundation of China (grant no. 51902292)the China Postdoctoral Science Foundation (grant no. 2024M752942)the Project funding for Young Backbone Teachers in Colleges and Universities of Henan Province (2020GGJS013)。
文摘Electrocatalysis plays a crucial role in the field of clean energy conversion and provides essential support for the development of eco-friendly technology. There is a pressing need for electrocatalysts in renewable energy systems that exhibit exceptional activity, selectivity, stability, and economic viability. The utilization of metal oxides as electrocatalysts for the process of water splitting has made substantial progress in both theoretical and practical aspects and has emerged as a widely explored field of research. Tungsten oxides(WO_(x)) have attracted much attention and are regarded as a highly promising electrocatalytic material due to their exceptional electrocatalytic activity, cost-effectiveness, and ability to withstand extreme conditions. This review introduces the fundamental mechanism of WOx-based electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction, providing a comprehensive overview of recent research advancements in their modification. Factors contributing to the catalytic activity and stability of WOxare explored, highlighting their potential for industrial applications. The aim herein is to provide guidelines for the design and fabrication of WOx-based electrocatalysts, thereby facilitating further research on their mechanistic properties and stability improvements in water splitting.
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
基金supports from the Zhejiang Provincial Natural Science Foundation(No.LR22E070001)the National Natural Science Foundation of China(Nos.12275239 and 11975205)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120048)the Fundamental Research Funds of Zhejiang Sci-Tech University(No.23062096-Y).
文摘This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)in alkaline media.Specifically,the nitrogen-doped carbon nanofiber-supported Ni-doped CoP_(3) with rich P defects(Pv·)on the carbon cloth(p-NiCoP/NCFs@CC)is synthesized through a plasma-assisted phosphorization method.The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER.It only needs overpotentials of 107 and 306 mV to drive 100 mA cm^(-2) for the HER and the OER,respectively.Its catalytic activities are higher than those of other catalysts reported recently.The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features.The density functional theory calculation indicates that the Pv·richness,the Ni doping,and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process.This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER.When used in alkaline water electrolyzers,the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.
基金supported by the National Natural Sci-ence Foundation of China(22272081),Jiangsu Provincial Specially Appointed Professors Foundation.
文摘Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.