Steroid hormones,synthesized from cholesterol via cytochrome P450 enzymes,are categorized into adrenocortical hormones and sex hormones.Their monitoring is crucial in clinical and research settings for evaluating dise...Steroid hormones,synthesized from cholesterol via cytochrome P450 enzymes,are categorized into adrenocortical hormones and sex hormones.Their monitoring is crucial in clinical and research settings for evaluating disease risk and physiological shifts,as well as for managing medical conditions.The structural similarity and concentration differences of steroid hormones in biological samples create significant challenges for analysis.Traditional immunoassays(IAs)are now less effective due to cross-reactivity and other limitations.Advances in mass spectrometry(MS),especially liquid chromatography-tandem mass spectrometry,have become preferred for steroid hormone detection,establishing a new“gold standard”in the field.The paper examines the influence of various pretreatment methods on the sensitivity and detection limits of steroid hormones,including protein precipitation,liquid–liquid extraction,solid-phase extraction,cold-induced phase separation technique,and derivatization technique,providing a crucial reference for clinical steroid detection.This paper reviews IAs and MS methods used recently(2013–2023)for detecting endogenous steroid hormones,highlighting their analytical strengths and limitations.It also discusses recent advancements and future prospects in both IA and MS methodologies.展开更多
[Objectives]This study was conducted to establish a detection method for the simultaneous determination of 18 perfluorinated compounds(PFCs)in milk tea by ultra-high performance liquid chromatography-tandem mass spect...[Objectives]This study was conducted to establish a detection method for the simultaneous determination of 18 perfluorinated compounds(PFCs)in milk tea by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS).[Methods]The samples were first subjected to precipitation of proteins by potassium ferrocyanide solution and zinc acetate solution,and then extracted by acetonitrile and detected by LC-MS/MS.Next,sodium chloride was added,and after vortex centrifugation,the acetonitrile layer was dried by blowing with nitrogen.Subsequently,1 ml of methanol was added to prepare a test solution.An ACQUITY UPLC BEH C18(2.6 m,2.1 mm×100 mm)chromatographic column was used for liquid phase separation,and gradient elution was performed using 10 mmol ammonium acetate solution-acetonitrile as the mobile phase.The MS detection adopted the MRM mode for acquisition,positive and negative ion mode switching for simultaneous determination,and external standard method for quantification.[Results]In the linear ranges of the target substances,the correlation coefficients R^(2)were all greater than 0.99.The detection limits of the method was in the range of 0.001-0.05μg/kg,and the quantitation limits were in the range of 0.03-0.20 ng/L.The recovery values ranged from 72.8%to 110.5%.[Conclusions]This method has high sensitivity and good accuracy,and thus strong practical value.展开更多
Agarwood is a resinous wood produced by plants of the genus Aquilaria in the Thymelaeaceae family after being injured.The wide distribution of origins and the complexity of formation have led to various species of aga...Agarwood is a resinous wood produced by plants of the genus Aquilaria in the Thymelaeaceae family after being injured.The wide distribution of origins and the complexity of formation have led to various species of agarwood.The preciousness,universality of application and scarcity of resources bring difficulties to the quality control of agarwood,the in-situ ionization technique shows great potential in the rapid and accurate identification of valuable herbal medicines.In this paper,based on the combination of paper capillary spray and miniature mass spectrometry,different kinds of agarwood and counterfeits were directly added onto the chromatography paper,the active ingredients were extracted by solvent and then carried out by the portable miniature mass spectrometry,which could be implemented to perform an effective and on-site analysis,and the whole process only took about 1 min.Characteristic highly oxidized 2-(2-phenylethyl)chromones and flindersia-type 2-(2-phenylethyl)chromones were detected in authentic agarwood,and other characteristic flindersia-type 2-(2-phenylethyl)chromones were detected in authentic Kynam agarwood(special variety of agarwood),while the above characteristic components were not detected in counterfeits.Furthermore,an artificial intelligence model based on random forest algorithm was established for automatic identification.This approach is versatile,unfettered by location or environmental constraints,making it particularly valuable in the identification of precious Chinese herbal medicines.展开更多
BACKGROUND Cardiovascular disease(CVD)and associated sequalae remain the leading cause of disability worldwide.Ischemic heart disease(IHD)and heart failure are the most common etiologies of morbidity and mortality wor...BACKGROUND Cardiovascular disease(CVD)and associated sequalae remain the leading cause of disability worldwide.Ischemic heart disease(IHD)and heart failure are the most common etiologies of morbidity and mortality worldwide.This is due to the poor diagnostic and management methods for heart failure and IHD.Early detection of related risk factors through modern strategies is underestimated and requires further research.AIM To interpret data from the published literature on volatile organic compounds(VOC),including all the methods used to analyze exhaled breath in patients with IHD and heart failure.METHODS Searches for specific keywords were performed on Scopus and PubMed.A total of 20 studies were identified in breath analysis and IHD and heart failure.The study is registered in PROSPERO(Registration No.CRD42023470556).RESULTS Considering the articles found,more research is required to gain a full understanding of the role of VOCs in IHD and heart failure.However,the existing literature demonstrates that cardiac metabolic changes can be expressed in exhaled air.The number of papers found is extremely low,making interpretation extremely difficult.CONCLUSION Exhaled breath analysis can be a novel biomarker for the diagnosis and prevention of heart failure and IHD.Exhaled breath analysis can be used as a mirror to reflect the metabolic changes related to IHD and heart failure.展开更多
Polygonati rhizoma is often used in Chinese medicine and as food.In this study,atmospheric pressure matrixassisted laser desorption ionization and quadruple-time-of-flight(MALDI-Q-TOF)mass spectrometry techniques were...Polygonati rhizoma is often used in Chinese medicine and as food.In this study,atmospheric pressure matrixassisted laser desorption ionization and quadruple-time-of-flight(MALDI-Q-TOF)mass spectrometry techniques were applied to P.rhizoma samples from Polygonatum cyrtonema Hua species.Positive ions were mainly detected in the mass range of m/z 200-600,while negative ions were mainly observed in the mass range of m/z 100-450.A total of 263 components were identified and the spatial distribution and changes in saccharides contents during the steaming process of P.rhizoma were investigated.Monosaccharide and disaccharide exhibit a relatively uniform distribution,while the oligosaccharides were mainly found in the bast of fresh P.rhizoma.Although the contents of monosaccharide and disaccharide were increased during steaming,that of trisaccharide,tetrasaccharide,and pentasaccharide were decreased.We used the 5 saccharide types with the greatest variation in content as variables for the principal component analysis(PCA)and cluster analysis.Both PCA and cluster analysis showed that these 5 saccharides can be used as markers in the steaming process of the P.rhizoma.Present study of mass spectrometry imaging provides novel insights into the spatiotemporal accumulation patterns of saccharides in P.rhizoma,improving our understanding of the steaming process.展开更多
Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA ...Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.展开更多
The present work aims at studying five Indian coals and their solvent extracted clean coal products using Py-GCMS analysis and correlating the characterization data using theoretical principal component analysis.The p...The present work aims at studying five Indian coals and their solvent extracted clean coal products using Py-GCMS analysis and correlating the characterization data using theoretical principal component analysis.The pyrolysis products of the original coals and the super clean coals were classified as mono-,di-and tri-aromatics,while other prominent products that were obtained included cycloalkanes,n-alkanes,and alkenes ranging from C_(10)-C_(29).The principal component analysis is a dimensionality reduction technique that reduced the number of input variables in the characterization dataset and gave inferences on the relative composition of constituent compounds and functional groups and structural insights based on scores and loading plots which were consistent with the experimental observations.ATR-FTIR studies confirmed the reduced concentration of ash in the super clean coals and the presence of aromatics.The Py-GCMS data and the ATR-FTIR spectra led to the conclusion that the super clean coals behaved similarly for both coking and noncoking coals with high aromatic concentrations as compared to the raw coal.Neyveli lignite super clean coal was found to show some structural similarity with the original coals,whereas the other super clean coals showed structural similarity within themselves but not with their original coal samples confirming the selective action of the e,N solvent in solubilizing the polycondensed aromatic structures in the coal samples.展开更多
The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides...The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.展开更多
The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample pre...The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption elec...Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption electrospray ionization mass spectrometry imaging(AFADESI-MSI),time-of-flight secondary ion mass spectrometry(ToF-SIMS),and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride(NC),a promising anti-tumor drug candidate.Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney,particularly within the inner cortex(IC)region,following single and repeated dose of NC.High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule.Employing spatial metabolomics based on AFADESI-MSI,we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure.These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters(organic cation transporters,multidrug and toxin extrusion,and organic cation transporter 2(OCT2)),metabolic enzymes(protein arginine N-methyltransferase(PRMT)and nitric oxide synthase),mitochondria,oxidative stress,and inflammation in NC-induced nephrotoxicity.This study offers novel insights into NC-induced renal damage,representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.展开更多
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.Ho...In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.展开更多
Microproteomics, the profiling of protein expressions in small cell populations or individual cells, is essential for understanding complex biological systems. However, sample loss and insufficient sensitivity of anal...Microproteomics, the profiling of protein expressions in small cell populations or individual cells, is essential for understanding complex biological systems. However, sample loss and insufficient sensitivity of analytical techniques pose severe challenges to this field. Microfluidics, particularly droplet-based microfluidics, provides an ideal approach by enabling miniaturized and integrated workflows to process samples and offers several advantages, including reduced sample loss, low reagent consumption, faster reaction times, and improved throughput. Droplet-based microfluidics manipulates droplets of fluids to function as discrete reaction units, enabling complex chemical reactions and biological workflows in a miniaturized setting. This article discusses a variety of on-chip functions of droplet-based microfluidics,including cell sorting, cell culture, and sample processing. We then highlight recent advances in the mass spectrometry(MS)-based analysis of single cells using droplet-based microfluidic platforms, including digital microfluidics(DMF). Finally, we review the integrated DMF–MS systems that enable automated and parallel proteomic profiling of single cells with high sensitivity and discuss the applications of the technology and its future perspectives.展开更多
Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling a...Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling and fast photooxidation of proteins(FPOP),in conjunction with mass spectrometry(MS),to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics(BABB).The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions,which cannot be detected by conventional biophysical techniques,e.g.,near-ultraviolet circular dichroism(NUV-CD).The determined variations in labeling uptake under native and stress conditions,corroborated by binding assays,shed light on the binding effect,and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality.Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.展开更多
The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, ...The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, there remains a dearth of understanding regarding the complex molecular composition inherent to heavy oil. In this study, we employed high-resolution mass spectrometry in conjunction with various chemical derivatization and ionization methods to obtain semi-quantitative results of molecular group compositions of 35 heavy oils. The gradient boosting(GB) model has been further used to acquire the feature importance rank(FIR). A feature is an independently observable property of the observed object. Feature importance can measure the contribution of each input feature to the model prediction result, indicate the degree of correlation between the feature and the target,unveil which features are indicative of certain predictions. We have developed a framework for utilizing physical insights into the impact of molecular group compositions on viscosity. The results of machine learning(ML) conducted by GB show that the viscosity of heavy oils is primarily influenced by light components, specifically small molecular hydrocarbons with low condensation degrees, as well as petroleum acids composed of acidic oxygen groups and neutral nitrogen groups. Additionally, large molecular aromatic hydrocarbons and sulfoxides also play significant roles in determine the viscosity.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.neg...BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.展开更多
基金China Postdoctoral Science Foundation(2021M702937)for the financial support。
文摘Steroid hormones,synthesized from cholesterol via cytochrome P450 enzymes,are categorized into adrenocortical hormones and sex hormones.Their monitoring is crucial in clinical and research settings for evaluating disease risk and physiological shifts,as well as for managing medical conditions.The structural similarity and concentration differences of steroid hormones in biological samples create significant challenges for analysis.Traditional immunoassays(IAs)are now less effective due to cross-reactivity and other limitations.Advances in mass spectrometry(MS),especially liquid chromatography-tandem mass spectrometry,have become preferred for steroid hormone detection,establishing a new“gold standard”in the field.The paper examines the influence of various pretreatment methods on the sensitivity and detection limits of steroid hormones,including protein precipitation,liquid–liquid extraction,solid-phase extraction,cold-induced phase separation technique,and derivatization technique,providing a crucial reference for clinical steroid detection.This paper reviews IAs and MS methods used recently(2013–2023)for detecting endogenous steroid hormones,highlighting their analytical strengths and limitations.It also discusses recent advancements and future prospects in both IA and MS methodologies.
基金Supported by Natural Science Foundation of Hunan Province(2024JJ8266).
文摘[Objectives]This study was conducted to establish a detection method for the simultaneous determination of 18 perfluorinated compounds(PFCs)in milk tea by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS).[Methods]The samples were first subjected to precipitation of proteins by potassium ferrocyanide solution and zinc acetate solution,and then extracted by acetonitrile and detected by LC-MS/MS.Next,sodium chloride was added,and after vortex centrifugation,the acetonitrile layer was dried by blowing with nitrogen.Subsequently,1 ml of methanol was added to prepare a test solution.An ACQUITY UPLC BEH C18(2.6 m,2.1 mm×100 mm)chromatographic column was used for liquid phase separation,and gradient elution was performed using 10 mmol ammonium acetate solution-acetonitrile as the mobile phase.The MS detection adopted the MRM mode for acquisition,positive and negative ion mode switching for simultaneous determination,and external standard method for quantification.[Results]In the linear ranges of the target substances,the correlation coefficients R^(2)were all greater than 0.99.The detection limits of the method was in the range of 0.001-0.05μg/kg,and the quantitation limits were in the range of 0.03-0.20 ng/L.The recovery values ranged from 72.8%to 110.5%.[Conclusions]This method has high sensitivity and good accuracy,and thus strong practical value.
基金supported by the National Natural Science Foundation of China(82274223)National Drug Standard Improvement Project(2023Z002)。
文摘Agarwood is a resinous wood produced by plants of the genus Aquilaria in the Thymelaeaceae family after being injured.The wide distribution of origins and the complexity of formation have led to various species of agarwood.The preciousness,universality of application and scarcity of resources bring difficulties to the quality control of agarwood,the in-situ ionization technique shows great potential in the rapid and accurate identification of valuable herbal medicines.In this paper,based on the combination of paper capillary spray and miniature mass spectrometry,different kinds of agarwood and counterfeits were directly added onto the chromatography paper,the active ingredients were extracted by solvent and then carried out by the portable miniature mass spectrometry,which could be implemented to perform an effective and on-site analysis,and the whole process only took about 1 min.Characteristic highly oxidized 2-(2-phenylethyl)chromones and flindersia-type 2-(2-phenylethyl)chromones were detected in authentic agarwood,and other characteristic flindersia-type 2-(2-phenylethyl)chromones were detected in authentic Kynam agarwood(special variety of agarwood),while the above characteristic components were not detected in counterfeits.Furthermore,an artificial intelligence model based on random forest algorithm was established for automatic identification.This approach is versatile,unfettered by location or environmental constraints,making it particularly valuable in the identification of precious Chinese herbal medicines.
基金Supported by the Government Assignment to Philipp Kopylov,No.1023022600020-6Russian Science Foundation Grant to Philipp Kopylov,No.24-15-00549the Ministry of Science and Higher Education of the Russian Federation within the Framework of State Support for the Creation and Development of World-Class Research Center to Basheer Marzoog and Peter Chomakhidze,No.075-15-2022-304.
文摘BACKGROUND Cardiovascular disease(CVD)and associated sequalae remain the leading cause of disability worldwide.Ischemic heart disease(IHD)and heart failure are the most common etiologies of morbidity and mortality worldwide.This is due to the poor diagnostic and management methods for heart failure and IHD.Early detection of related risk factors through modern strategies is underestimated and requires further research.AIM To interpret data from the published literature on volatile organic compounds(VOC),including all the methods used to analyze exhaled breath in patients with IHD and heart failure.METHODS Searches for specific keywords were performed on Scopus and PubMed.A total of 20 studies were identified in breath analysis and IHD and heart failure.The study is registered in PROSPERO(Registration No.CRD42023470556).RESULTS Considering the articles found,more research is required to gain a full understanding of the role of VOCs in IHD and heart failure.However,the existing literature demonstrates that cardiac metabolic changes can be expressed in exhaled air.The number of papers found is extremely low,making interpretation extremely difficult.CONCLUSION Exhaled breath analysis can be a novel biomarker for the diagnosis and prevention of heart failure and IHD.Exhaled breath analysis can be used as a mirror to reflect the metabolic changes related to IHD and heart failure.
基金funded by the Science and Technology Innovation Program of Hunan Province(2022RC1224,2022ZYC010)the Changsha Science and Technology Program(kh2004018)the Training Program for Excellent Young Innovators of Changsha(kq2206064)。
文摘Polygonati rhizoma is often used in Chinese medicine and as food.In this study,atmospheric pressure matrixassisted laser desorption ionization and quadruple-time-of-flight(MALDI-Q-TOF)mass spectrometry techniques were applied to P.rhizoma samples from Polygonatum cyrtonema Hua species.Positive ions were mainly detected in the mass range of m/z 200-600,while negative ions were mainly observed in the mass range of m/z 100-450.A total of 263 components were identified and the spatial distribution and changes in saccharides contents during the steaming process of P.rhizoma were investigated.Monosaccharide and disaccharide exhibit a relatively uniform distribution,while the oligosaccharides were mainly found in the bast of fresh P.rhizoma.Although the contents of monosaccharide and disaccharide were increased during steaming,that of trisaccharide,tetrasaccharide,and pentasaccharide were decreased.We used the 5 saccharide types with the greatest variation in content as variables for the principal component analysis(PCA)and cluster analysis.Both PCA and cluster analysis showed that these 5 saccharides can be used as markers in the steaming process of the P.rhizoma.Present study of mass spectrometry imaging provides novel insights into the spatiotemporal accumulation patterns of saccharides in P.rhizoma,improving our understanding of the steaming process.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0760200)the National Natural Science Foundation of China(Grant No.42377101,91744207).
文摘Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.
基金The authors Sreedevi Upadhyayula acknowledges funding(Grant No.TMD/CERI/MDME/2017/001(G))from the Department of Science and Technology,New Delhi,India.Dr.Heena Dhawan is thankful to Prof.D.K.Sharma,Retired Professor of Centre for Energy Studies,IIT Delhi for his help with the coal samples and continuous guidance through the work and Prof.M.Crocker and T.Morgan,Center for Applied Energy Research,University of Kentucky,Lexington,KY 40511,USA for the Py-GCMS analysis.
文摘The present work aims at studying five Indian coals and their solvent extracted clean coal products using Py-GCMS analysis and correlating the characterization data using theoretical principal component analysis.The pyrolysis products of the original coals and the super clean coals were classified as mono-,di-and tri-aromatics,while other prominent products that were obtained included cycloalkanes,n-alkanes,and alkenes ranging from C_(10)-C_(29).The principal component analysis is a dimensionality reduction technique that reduced the number of input variables in the characterization dataset and gave inferences on the relative composition of constituent compounds and functional groups and structural insights based on scores and loading plots which were consistent with the experimental observations.ATR-FTIR studies confirmed the reduced concentration of ash in the super clean coals and the presence of aromatics.The Py-GCMS data and the ATR-FTIR spectra led to the conclusion that the super clean coals behaved similarly for both coking and noncoking coals with high aromatic concentrations as compared to the raw coal.Neyveli lignite super clean coal was found to show some structural similarity with the original coals,whereas the other super clean coals showed structural similarity within themselves but not with their original coal samples confirming the selective action of the e,N solvent in solubilizing the polycondensed aromatic structures in the coal samples.
基金supported by the National Natural Science Foundation of China(Nos.12125509,12222514,11961141003,and 12005304)National Key Research and Development Project(No.2022YFA1602301)+1 种基金CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholars Continuous support for basic scientific research projects。
文摘The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.
文摘The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金supported by the National Natural Science Foundation of China(Grant No.:21927808)the National Key Research and Development Program of China(Grant No.:2017YFC1704006).
文摘Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development.In this study,we present an innovative,integrated approach that combines air flowassisted desorption electrospray ionization mass spectrometry imaging(AFADESI-MSI),time-of-flight secondary ion mass spectrometry(ToF-SIMS),and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride(NC),a promising anti-tumor drug candidate.Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney,particularly within the inner cortex(IC)region,following single and repeated dose of NC.High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule.Employing spatial metabolomics based on AFADESI-MSI,we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure.These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters(organic cation transporters,multidrug and toxin extrusion,and organic cation transporter 2(OCT2)),metabolic enzymes(protein arginine N-methyltransferase(PRMT)and nitric oxide synthase),mitochondria,oxidative stress,and inflammation in NC-induced nephrotoxicity.This study offers novel insights into NC-induced renal damage,representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
基金supported in part by the National Key R&D Program of China (No. 2023YFA1606401)CAS Project for Young Scientists in Basic Research (No. YSBR-002)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34000000)the NSFC (Nos. 12305126, 12135017, 12121005)the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2021419)the support from the Yong Scholar of Regional Development,CAS (No.[2023]15)
文摘In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.
基金supported by National Natural Science Foundation of China (62103050)National Key Research and Development Program of China (2022YFA1207100 and 2023YFE0112400)+3 种基金Beijing Natural Science Foundation (2242018)BIT Research and Innovation Promoting Project (2023CX01002)Open Research Fund of State Key Laboratory of Digital Medical Engineering (2023-K02)Open Research Fund of State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University) (OEMT-2022KF-09)。
文摘Microproteomics, the profiling of protein expressions in small cell populations or individual cells, is essential for understanding complex biological systems. However, sample loss and insufficient sensitivity of analytical techniques pose severe challenges to this field. Microfluidics, particularly droplet-based microfluidics, provides an ideal approach by enabling miniaturized and integrated workflows to process samples and offers several advantages, including reduced sample loss, low reagent consumption, faster reaction times, and improved throughput. Droplet-based microfluidics manipulates droplets of fluids to function as discrete reaction units, enabling complex chemical reactions and biological workflows in a miniaturized setting. This article discusses a variety of on-chip functions of droplet-based microfluidics,including cell sorting, cell culture, and sample processing. We then highlight recent advances in the mass spectrometry(MS)-based analysis of single cells using droplet-based microfluidic platforms, including digital microfluidics(DMF). Finally, we review the integrated DMF–MS systems that enable automated and parallel proteomic profiling of single cells with high sensitivity and discuss the applications of the technology and its future perspectives.
基金supported by Amgen Inc.,USA and the National Institutes of Health,USA(Grant Nos.:R01CA218500(ARI)and R35GM136421(ARI))。
文摘Biotherapeutic's higher order structure(HOS)is a critical determinant of its functional properties and conformational relevance.Here,we evaluated two covalent labeling methods:diethylpyrocarbonate(DEPC)-labeling and fast photooxidation of proteins(FPOP),in conjunction with mass spectrometry(MS),to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics(BABB).The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions,which cannot be detected by conventional biophysical techniques,e.g.,near-ultraviolet circular dichroism(NUV-CD).The determined variations in labeling uptake under native and stress conditions,corroborated by binding assays,shed light on the binding effect,and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality.Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
基金supported by the National Key R&D Program of China (2018YFA0702400)。
文摘The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, there remains a dearth of understanding regarding the complex molecular composition inherent to heavy oil. In this study, we employed high-resolution mass spectrometry in conjunction with various chemical derivatization and ionization methods to obtain semi-quantitative results of molecular group compositions of 35 heavy oils. The gradient boosting(GB) model has been further used to acquire the feature importance rank(FIR). A feature is an independently observable property of the observed object. Feature importance can measure the contribution of each input feature to the model prediction result, indicate the degree of correlation between the feature and the target,unveil which features are indicative of certain predictions. We have developed a framework for utilizing physical insights into the impact of molecular group compositions on viscosity. The results of machine learning(ML) conducted by GB show that the viscosity of heavy oils is primarily influenced by light components, specifically small molecular hydrocarbons with low condensation degrees, as well as petroleum acids composed of acidic oxygen groups and neutral nitrogen groups. Additionally, large molecular aromatic hydrocarbons and sulfoxides also play significant roles in determine the viscosity.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.
文摘BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.