期刊文献+
共找到106,883篇文章
< 1 2 250 >
每页显示 20 50 100
Spatio-temporal clustering analysis of COVID-19 cases in Johor
1
作者 Fong Ying Foo Nuzlinda Abdul Rahman +1 位作者 Fauhatuz Zahroh Shaik Abdullah Nurul Syafiah Abd Naeeim 《Infectious Disease Modelling》 CSCD 2024年第2期387-396,共10页
At the end of the year 2019,a virus named SARS-CoV-2 induced the coronavirus disease,which is very contagious and quickly spread around the world.This new infectious disease is called COVID-19.Numerous areas,such as t... At the end of the year 2019,a virus named SARS-CoV-2 induced the coronavirus disease,which is very contagious and quickly spread around the world.This new infectious disease is called COVID-19.Numerous areas,such as the economy,social services,education,and healthcare system,have suffered grave consequences from the invasion of this deadly virus.Thus,a thorough understanding of the spread of COVID-19 is required in order to deal with this outbreak before it becomes an infectious disaster.In this research,the daily reported COVID-19 cases in 92 sub-districts in Johor state,Malaysia,as well as the population size associated to each sub-district,are used to study the propagation of COVID-19 disease across space and time in Johor.The time frame of this research is about 190 days,which started from August 5,2021,until February 10,2022.The clustering technique known as spatio-temporal clustering,which considers the spatio-temporal metric was adapted to determine the hot-spot areas of the COVID-19 disease in Johor at the sub-district level.The results indicated that COVID-19 disease does spike in the dynamic populated sub-districts such as the state's economic centre(Bandar Johor Bahru),and during the festive season.These findings empirically prove that the transmission rate of COVID-19 is directly proportional to human mobility and the presence of holidays.On the other hand,the result of this study will help the authority in charge in stopping and preventing COVID-19 from spreading and become worsen at the national level. 展开更多
关键词 Disease mapping COVID-19 Hot-spot areas Sub-district level spatio-temporal clustering Scan statistics
原文传递
A novel method for clustering cellular data to improve classification
2
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
3
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Multi-Step Clustering of Smart Meters Time Series:Application to Demand Flexibility Characterization of SME Customers
4
作者 Santiago Bañales Raquel Dormido Natividad Duro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期869-907,共39页
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the... Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions. 展开更多
关键词 Electric load clustering load profiling smart meters machine learning data mining demand flexibility demand response
在线阅读 下载PDF
Domain Delineation Using Geological Data, Variogram Analysis, and Clustering Algorithms
5
作者 Farzaneh Khorram Amin Hossein Morshedy 《Journal of Geoscience and Environment Protection》 2025年第1期31-47,共17页
Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study i... Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling. 展开更多
关键词 Domaining Hard and Fuzzy clustering Spatial Anisotropy Kahang Deposit
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
6
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 cluster Heads(CHs) Golden Jackal Optimization Algorithm(GJOA) Improved Whale Optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
7
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 clustering data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
基于Blending-Clustering集成学习的大坝变形预测模型
8
作者 冯子强 李登华 丁勇 《水利水电技术(中英文)》 北大核心 2024年第4期59-70,共12页
【目的】变形是反映大坝结构性态最直观的效应量,构建科学合理的变形预测模型是保障大坝安全健康运行的重要手段。针对传统大坝变形预测模型预测精度低、误报率高等问题导致的错误报警现象,【方法】选取不同预测模型和聚类算法集成,构... 【目的】变形是反映大坝结构性态最直观的效应量,构建科学合理的变形预测模型是保障大坝安全健康运行的重要手段。针对传统大坝变形预测模型预测精度低、误报率高等问题导致的错误报警现象,【方法】选取不同预测模型和聚类算法集成,构建了一种Blending-Clustering集成学习的大坝变形预测模型,该模型以Blending对单一预测模型集成提升预测精度为核心,并通过Clustering聚类优选预测值改善模型稳定性。以新疆某面板堆石坝变形监测数据为实例分析,通过多模型预测性能比较,对所提出模型的预测精度和稳定性进行全面评估。【结果】结果显示:Blending-Clustering模型将预测模型和聚类算法集成,均方根误差(RMSE)和归一化平均百分比误差(nMAPE)明显降低,模型的预测精度得到显著提高;回归相关系数(R~2)得到提升,模型具备更强的拟合能力;在面板堆石坝上22个测点变形数据集上的预测评价指标波动范围更小,模型的泛化性和稳定性得到有效增强。【结论】结果表明:Blending-Clustering集成预测模型对于预测精度、泛化性和稳定性均有明显提升,在实际工程具有一定的应用价值。 展开更多
关键词 大坝 变形 预测模型 Blending集成 clustering集成 模型融合
在线阅读 下载PDF
Unknown Application Layer Protocol Recognition Method Based on Deep Clustering 被引量:1
9
作者 Wu Jisheng Hong Zheng +1 位作者 Ma Tiantian Si Jianpeng 《China Communications》 SCIE CSCD 2024年第12期275-296,共22页
In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extract... In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods. 展开更多
关键词 attention mechanism clustering loss deep clustering network traffic unknown protocol recognition
在线阅读 下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism 被引量:1
10
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
在线阅读 下载PDF
Deep Learning and Tensor-Based Multiple Clustering Approaches for Cyber-Physical-Social Applications 被引量:1
11
作者 Hongjun Zhang Hao Zhang +3 位作者 Yu Lei Hao Ye Peng Li Desheng Shi 《Computers, Materials & Continua》 SCIE EI 2024年第3期4109-4128,共20页
The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Inst... The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts. 展开更多
关键词 Network platform tensor-based clustering weight learning multi-linear euclidean
在线阅读 下载PDF
Sparse Reconstructive Evidential Clustering for Multi-View Data 被引量:1
12
作者 Chaoyu Gong Yang You 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期459-473,共15页
Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, t... Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, these existing algorithms create only the hard and fuzzy partitions for multi-view objects,which are often located in highly-overlapping areas of multi-view feature space. The adoption of hard and fuzzy partition ignores the ambiguity and uncertainty in the assignment of objects, likely leading to performance degradation. To address these issues, we propose a novel sparse reconstructive multi-view evidential clustering algorithm(SRMVEC). Based on a sparse reconstructive procedure, SRMVEC learns a shared affinity matrix across views, and maps multi-view objects to a 2-dimensional humanreadable chart by calculating 2 newly defined mathematical metrics for each object. From this chart, users can detect the number of clusters and select several objects existing in the dataset as cluster centers. Then, SRMVEC derives a credal partition under the framework of evidence theory, improving the fault tolerance of clustering. Ablation studies show the benefits of adopting the sparse reconstructive procedure and evidence theory. Besides,SRMVEC delivers effectiveness on benchmark datasets by outperforming some state-of-the-art methods. 展开更多
关键词 Evidence theory multi-view clustering(MVC) optimization sparse reconstruction
在线阅读 下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization 被引量:1
13
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 clustering Multi-View Subspace clustering Low-Rank Prior Sparse Regularization
在线阅读 下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
14
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
在线阅读 下载PDF
Utilizing spatio-temporal feature fusion in videos for detecting the fluidity of coal water slurry
15
作者 Meijie Sun Ziqi Lv +3 位作者 Zhiqiang Xu Haimei Lv Yanan Tu Weidong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1587-1597,共11页
The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection m... The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection methods for assessing CWS fluidity.This paper proposed a method for analyzing the fluidity using videos of CWS dripping processes.By integrating the temporal and spatial features of each frame in the video,a multi-cascade classifier for CWS fluidity is established.The classifier distinguishes between four levels(A,B,C,and D)based on the quality of fluidity.The preliminary classification of A and D is achieved through feature engineering and the XGBoost algorithm.Subsequently,convolutional neural networks(CNN)and long short-term memory(LSTM)are utilized to further differentiate between the B and C categories which are prone to confusion.Finally,through detailed comparative experiments,the paper demonstrates the step-by-step design process of the proposed method and the superiority of the final solution.The proposed method achieves an accuracy rate of over 90%in determining the fluidity of CWS,serving as a technical reference for future industrial applications. 展开更多
关键词 Coal water slurry spatio-temporal feature CNN-LSTM Video classification Machine vision
在线阅读 下载PDF
Recent advances in spatio-temporally controllable systems for management of glioma
16
作者 Huiwen Zhang Wanqi Zhu +3 位作者 Wei Pan Xiuyan Wan Na Li Bo Tang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第5期28-53,共26页
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temp... Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance,including spatio-temporal adjustability,minimally invasive,repetitive properties,etc.External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues.It is worth noting that the removability of external stimuli allows for on-demand treatment,which effectively reduces the occurrence of side effects.In this review,we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma,focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies.Moreover,the potential challenges regarding spatio-temporally controllable therapy for glioma are also described,aiming to provide insights into future advancements in this field and their potential clinical applications. 展开更多
关键词 Glioma therapy spatio-temporally controllable PHOTOTHERAPY Sonodynamic therapy RADIOTHERAPY Magnetic therapy
在线阅读 下载PDF
A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
17
作者 Zhongshang Chen Ji Feng +1 位作者 Fapeng Cai Degang Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2031-2048,共18页
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared... In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes. 展开更多
关键词 cluster analysis shared natural neighbor hierarchical clustering
在线阅读 下载PDF
Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering
18
作者 Zhenyu Qian Yizhang Jiang +4 位作者 Zhou Hong Lijun Huang Fengda Li Khin Wee Lai Kaijian Xia 《Computers, Materials & Continua》 SCIE EI 2024年第6期4741-4762,共22页
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da... In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework. 展开更多
关键词 Deep subspace clustering multiscale network structure automatic hyperparameter tuning SEMI-SUPERVISED medical image clustering
在线阅读 下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
19
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
20
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 Fuzzy C-Means(FCM) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部