The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of...The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).展开更多
To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue ...To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.展开更多
Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlo...Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOC1) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOC1 generation, including current density, pH values, con- ductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOC1.展开更多
Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the ...Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Results revealed that the addition of sodium hypochlorite leads to the ultrafast growth of oxide films, and results in the significant changes of morphology and thickness. The influence of sodium hypochlorite on formation and crystallization of oxide films as a function of anodizing time was discussed. Meanwhile, potentiodynamic electrochemical tests and dry sliding wear tests were performed to evaluate the corrosion resistance and tribological properties of oxide films. It was found that the oxide film fabricated with the existence of sodium hypochlorite had improved corrosion resistance and tribological properties than the one formed without sodium hypochlorite. Moreover, the effect mechanism of sodium hypochlorite on the growth rate and surface morphologies of oxide films during the anodizing process was discussed. It was found that hypochlorite ions participated in the reaction on anode which causes the rapid growth of oxide films and then affect the whole anodizing process.展开更多
A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin...A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.展开更多
基金Supported by Project for Achievement Transformation of High and New Technology in Shanghai City(201405267)
文摘The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).
基金Supported by the National Basic Research Program of China("973" Program,No.2011CB215302)National Natural Science Foundation of China(No.21206188 and 21106177)+1 种基金China Postdoctoral Science Foundation(No.2012M511339)Fundamental Research Funds for the Central Universities(No.2011QNA23)
文摘To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.
文摘Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOC1) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOC1 generation, including current density, pH values, con- ductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOC1.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Results revealed that the addition of sodium hypochlorite leads to the ultrafast growth of oxide films, and results in the significant changes of morphology and thickness. The influence of sodium hypochlorite on formation and crystallization of oxide films as a function of anodizing time was discussed. Meanwhile, potentiodynamic electrochemical tests and dry sliding wear tests were performed to evaluate the corrosion resistance and tribological properties of oxide films. It was found that the oxide film fabricated with the existence of sodium hypochlorite had improved corrosion resistance and tribological properties than the one formed without sodium hypochlorite. Moreover, the effect mechanism of sodium hypochlorite on the growth rate and surface morphologies of oxide films during the anodizing process was discussed. It was found that hypochlorite ions participated in the reaction on anode which causes the rapid growth of oxide films and then affect the whole anodizing process.
基金Supported by the National'Natural Science Foundation of China (21036009, 21176268), the Higher-level Talent Project tor Guangdong Provincial Universities and the Fundamental.Research Funds for the Central Universities.
文摘A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.