期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于特征融合的SSD视觉小目标检测 被引量:12
1
作者 王冬丽 廖春江 +1 位作者 牟金震 周彦 《计算机工程与应用》 CSCD 北大核心 2020年第16期31-36,共6页
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值... 针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 展开更多
关键词 小目标检测 特征融合 SSD(single shot multibox detector) 特征增强 PASCAL VOC2007
在线阅读 下载PDF
一种基于机器视觉的精准注意力追踪系统 被引量:3
2
作者 刘纪元 祁瀚文 +2 位作者 刘志诚 费敏锐 张堃 《系统仿真学报》 CAS CSCD 北大核心 2023年第10期2087-2100,共14页
针对学生注意力分配困难和对学习影响等问题,提出一种基于机器视觉的精准注意力追踪系统。该系统包括图像采集装置和精准的注意力追踪算法。图像采集装置可以获得更清晰的眼部区域图像。瞳孔中心定位算法用轻量级的MobileNet v3替换VGG1... 针对学生注意力分配困难和对学习影响等问题,提出一种基于机器视觉的精准注意力追踪系统。该系统包括图像采集装置和精准的注意力追踪算法。图像采集装置可以获得更清晰的眼部区域图像。瞳孔中心定位算法用轻量级的MobileNet v3替换VGG16(visual geometry group network),采用两级特征融合和中心关键点预测技术,提高了检测速度和准确率。该算法检测速度可达36帧/s,准确率为97.42%。视线追踪算法旨在解决头部偏移的影响,实现对视线的精确追踪。研发了一款面向学龄儿童的阅读认知评价交互软件。该软件利用采集到的视线坐标计算相关眼动指标,再通过心理学理论分析建模来评估学龄儿童的思维认知能力,为心理学和教育学相关领域研究提供了参考和借鉴。 展开更多
关键词 瞳孔定位 改进型SSD(single shot multibox detector)算法 Eye-ORB(oriented FAST and rotated brief)算法 阅读认知 注意力追踪
在线阅读 下载PDF
基于密集模块与特征融合的SSD目标检测算法 被引量:5
3
作者 周凡 朴燕 秦晓伟 《计算机工程与应用》 CSCD 北大核心 2020年第16期105-111,共7页
通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与... 通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与密集网络中密集连接的研究思路,将两种方法融合在一起,提出了Inception-Dense特征提取结构。在多尺度检测的部分,借鉴并改进了特征金字塔的特征融合模块来加强对中小目标的检测能力。根据改进模型及实验数据集的相关特性,对默认框的映射机制也进行了重新设定。结果表明:该方法在Kitti数据集上的平均测试精确度(mAP)为83.8%;识别率相比于原SSD模型的72.8%,提升了11个百分点。FPS方面也有接近38%的提升,从原来的39提升到了54。 展开更多
关键词 深度学习 SSD(single shot multibox detector) 目标检测 神经网络
在线阅读 下载PDF
基于ECA-SSD模型的汽车零件缺陷检测 被引量:1
4
作者 金文倩 彭露露 +1 位作者 朱媛媛 王笑梅 《计算机与现代化》 2022年第3期82-90,共9页
汽车零件对汽车外观、性能以及安全性都有重大影响。由于汽车零件数量大、体积小、对精度要求高,因此对零件检测的精度和速度都有一定的要求。本文利用图像处理技术,以SSD模型为基础,将其中的VGG模块用深度可分离卷积和线性瓶颈倒残差... 汽车零件对汽车外观、性能以及安全性都有重大影响。由于汽车零件数量大、体积小、对精度要求高,因此对零件检测的精度和速度都有一定的要求。本文利用图像处理技术,以SSD模型为基础,将其中的VGG模块用深度可分离卷积和线性瓶颈倒残差结构替换,并引入避免降维的局部跨通道交互有效的注意力机制ECA模块,在减少模型参数运算量的同时,适当增加通道以提高模型精度,并将注意力放在图像目标上,忽略背景带来的干扰,实现快速又准确的汽车零件缺陷检测。利用本文模型对上汽提供的汽车零件外壁缺陷进行检测,实验结果表明,模型大小仅为15.9 MB,mAP为94.64%,检测每张图片时间为0.013 s,满足汽车工业上的速度和精度的需求。对比性研究表明,本文模型检测精度和速度以及大小较其他目标检测算法VGG-SSD、MobileNetv2-SSD、YOLO v3等有一定的提高和改善。 展开更多
关键词 有效通道注意力(ECA) 深度可分离卷积 倒残差 缺陷检测 SSD(single shot multibox detector)
在线阅读 下载PDF
A method for robust TV logo detection
5
作者 Pan Da Shi Ping +2 位作者 Ying Zefeng Hou Ming Han Mingliang 《High Technology Letters》 EI CAS 2019年第2期144-152,共9页
A robust TV logo detection method based on the modified single shot multibox detector (SSD) is presented. Unlike most other existing methods which can only detect the TV logo from video frames, the proposed method can... A robust TV logo detection method based on the modified single shot multibox detector (SSD) is presented. Unlike most other existing methods which can only detect the TV logo from video frames, the proposed method can also detect the TV logo from photo pictures taken by smartphones or other smart terminals. Firstly, using a simple and effective way of collecting and labelling TV logo, a large-scale TV logo dataset used to train the detection model is built. Then, parameters and loss function of SSD are modified to make it more suitable for the task of TV logo detection. Moreover, a soft-NMS algorithm is introduced to remove the redundant overlapping boxes and obtain the final output box. And also an approach for hard example mining is designed to improve the detection accuracy. Finally, extensive comparison experiments are carried out which take into consideration different image resolutions, logo positions and environmental factors existing in real-world applications. Experimental results demonstrate that the proposed method achieve superior performances in robustness compared to other state-of-the-art methods. 展开更多
关键词 single shot multibox detector(SSD) TV logo detection TV logo dataset loss function hard example mining
在线阅读 下载PDF
基于空间-通道注意力的改进SSD目标检测算法 被引量:14
6
作者 许光宇 尹孟园 《光电子.激光》 CAS CSCD 北大核心 2021年第9期970-978,共9页
目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spa... 目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spatial and channel single shot multibox detector,SC_SSD)。通过在SSD深层网络引入空间-通道注意力机制增强高层特征图语义信息,提高算法获取目标物体的细节与位置信息的能力,从而降低漏检率及误检率,并提高小目标物体检测的准确度。此外,利用MobileNetV2中的深度可分离卷积对SSD主干网络(visual geometry group network,VGG-16)进行剪枝处理,降低参数量,从而减少训练与检测的时间。在PASCAL VOC2007数据集上进行实验,本文算法检测的精确度与速度分别为78.9%与59.4 Fps,比SSD算法提升了3.2%与26.7 Fps,满足实时性需求。算法也优于相比较的其他算法,是一种有效可行的目标检测算法。 展开更多
关键词 目标检测 single shot multibox detector(SSD)算法 空间-通道注意力机制 小目标
原文传递
Multi-block SSD based on small object detection for UAV railway scene surveillance 被引量:27
7
作者 Yundong LI Han DONG +3 位作者 Hongguang LI Xueyan ZHANG Baochang ZHANG Zhifeng XIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1747-1755,共9页
A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a... A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a multi-block SSD mechanism,which consists of three steps,is designed.First,the original input images are segmented into several overlapped patches.Second,each patch is separately fed into an SSD to detect the objects.Third,the patches are merged together through two stages.In the first stage,the truncated object of the sub-layer detection result is spliced.In the second stage,a sub-layer suppression and filtering algorithm applying the concept of non-maximum suppression is utilized to remove the overlapped boxes of sub-layers.The boxes that are not detected in the main-layer are retained.In addition,no sufficient labeled training samples of railway circumstance are available,thereby hindering the deployment of SSD.A two-stage training strategy leveraging to transfer learning is adopted to solve this issue.The deep learning model is preliminarily trained using labeled data of numerous auxiliaries,and then it is refined using only a few samples of railway scene.A railway spot in China,which is easily damaged by landslides,is investigated as a case study.Experimental results show that the proposed multi-block SSD method produces an overall accuracy of 96.6%and obtains an improvement of up to 9.2%compared with the traditional SSD. 展开更多
关键词 Deep learning Multi-block single shot multibox detector(SSD) Objection detection Railway scene Unmanned aerial vehicle remote sensing
原文传递
Automated classification and detection of multiple pavement distress images based on deep learning 被引量:3
8
作者 Deru Li Zhongdong Duan +2 位作者 Xiaoyang Hu Dongchang Zhang Yiying Zhang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第2期276-290,共15页
To achieve automatic,fast,efficient and high-precision pavement distress classification and detection,road surface distress image classification and detection models based on deep learning are trained.First,a pavement... To achieve automatic,fast,efficient and high-precision pavement distress classification and detection,road surface distress image classification and detection models based on deep learning are trained.First,a pavement distress image dataset is built,including 9017pictures with distress,and 9620 pictures without distress.These pictures were captured from 4 asphalt highways of 3 provinces in China.In each pavement distress image,there exists one or more types of distress,including alligator crack,longitudinal crack,block crack,transverse crack,pothole and patch.The distresses are labeled by a rectangle bounding box on the pictures.Then ResNet networks and VGG networks are used respectively as binary classification models for distressed and non-distressed imagines classification,and as multi-label classification models for six types of distress classification.Training techniques,such as data augmentation,batch normalization,dropout,momentum,weight decay,transfer learning,and discriminative learning rate are used in training the model.Among the 4 CNNs considered in this study,namely ResNet 34 and 50,and VGG 16 and 19,for the binary classification,ResNet 50 has the highest Accuracy of 96.243%,Precision of 95.183%,and ResNet 34 has the highest Recall of 97.824%,and F2 score of 97.052%.For multi-label classification,ResNet 50 has the best performance,with the highest Accuracy of 90.257%,higher than 90%required by the Chinese standard(JTG H20-2018)for road distresses detection,F2 score-82.231%,and Precision-76.509%,and ResNet34 has the highest Recall of 87.32%.To locate and quantify the distress areas in the images,the single shot multibox detector(SSD)model is developed,in which the ResNet 50 is used as the base network to extract features.When the intersection over union(IoU)is set to 0,0.25,0.50,0.75,the mean average precision(mAP)of the model are found to be 74.881%,50.511%,28.432%,3.969%,respectively. 展开更多
关键词 Pavement distress Deep learning Multi-label classification Distress detection single shot multibox detector Convolutional neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部