期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting 被引量:5
1
作者 M. Madhiarasan S. N. Deepa 《Circuits and Systems》 2016年第10期2975-2995,共21页
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ... The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust. 展开更多
关键词 ELMAN neural network Modified Grey Wolf Optimizer hidden layer Neuron Units Forecasting Wind Speed
在线阅读 下载PDF
求解单层织物热湿耦合模型正反问题的物理信息神经网络方法
2
作者 蔡启凡 徐映红 《软件工程》 2025年第1期73-78,共6页
针对织物热湿耦合模型难以解耦和反问题求解时间长的问题,提出了一种求解单层稳态织物热湿耦合传递模型正反问题的物理信息神经网络(Physics-Informed Neural Networks,PINNs)方法。首先,给出了求解单层织物热湿传递方程正问题的PINNs方... 针对织物热湿耦合模型难以解耦和反问题求解时间长的问题,提出了一种求解单层稳态织物热湿耦合传递模型正反问题的物理信息神经网络(Physics-Informed Neural Networks,PINNs)方法。首先,给出了求解单层织物热湿传递方程正问题的PINNs方法,并采用数值实验验证了方法的有效性。其次,提出了基于热湿舒适性的厚度参数决定反问题,并使用PINNs方法进行求解。数值实验结果显示,PINNs方法在求解参数决定反问题时,仅需5 min即可预测出概率函数,相比于微分方程数值求解和粒子群结合方法,求解效率提高了25倍,展现出显著的优越性和应用潜力。 展开更多
关键词 单层织物 热湿模型 耦合方程 神经网络 PINNs
在线阅读 下载PDF
一种多尺度循环残差注意的单幅图像去雨方法
3
作者 刘邱铃 周刚 乔敏 《计算机应用与软件》 北大核心 2025年第2期236-240,279,共6页
目前基于卷积神经网络的去雨方法,存在雨纹残留、图像模糊等问题。为此提出一种基于多尺度特征提取和循环残差注意的单幅图像去雨方法。通过构建多尺度拉普拉斯金字塔得到多尺度特征图,再设计循环残差注意模块加强阶段间联系、提取深度... 目前基于卷积神经网络的去雨方法,存在雨纹残留、图像模糊等问题。为此提出一种基于多尺度特征提取和循环残差注意的单幅图像去雨方法。通过构建多尺度拉普拉斯金字塔得到多尺度特征图,再设计循环残差注意模块加强阶段间联系、提取深度特征、增强重要特征权重,更好地去除雨纹并保留了图像细节。实验结果表明,该方法的去雨效果优于其他去雨算法。 展开更多
关键词 卷积神经网络 单幅图像去雨 多层拉普拉斯金字塔 多尺度特征图 循环残差注意模块
在线阅读 下载PDF
一种多元信息流异常数据聚类修正方法与仿真
4
作者 颜清 李金讯 陈诗 《计算机仿真》 2025年第1期258-262,共5页
多元信息流涵盖多种类型、不同维度的数据,存在异构性和不确定性,以大规模和高速度连续产生,难以从中提取异常数据分布的特征,使得算法对异常数据的检测陷入局部最优解,出现局部收敛和早熟现象,进而影响异常数据修正。对此,引入混合蛙... 多元信息流涵盖多种类型、不同维度的数据,存在异构性和不确定性,以大规模和高速度连续产生,难以从中提取异常数据分布的特征,使得算法对异常数据的检测陷入局部最优解,出现局部收敛和早熟现象,进而影响异常数据修正。对此,引入混合蛙跳算法,对多元信息流异常数据展开修正。标准化处理多元信息流数据,建立预选特征子集,采用混合蛙跳算法-人工鱼群算法和混合蛙跳算法-模糊C-均值聚类算法,在搜索过程中利用了两种算法的优势,在多个搜索空间中找到最优数据特征,更准确地划分聚类簇,获取最优的数据特征并实施聚类处理,得到异常数据集合。基于单层前馈神经网络,构建异常数据修正模型,通过更新参数,由输出层输出异常数据的修正结果。仿真测试结果显示:混合蛙跳算法能够加强融合对象的优势,检测异常数据集占比高达99.72%,精准完成异常数据检测任务;修正误差最大仅为1.119,可以满足精准性需求。 展开更多
关键词 多元信息流 混合蛙跳算法 人工鱼群算法 模糊均值聚类算法 单层前馈神经网络 异常数据修正
在线阅读 下载PDF
A Framework for Distributed Semi-supervised Learning Using Single-layer Feedforward Networks 被引量:1
5
作者 Jin Xie San-Yang Liu Jia-Xi Chen 《Machine Intelligence Research》 EI CSCD 2022年第1期63-74,共12页
This paper aims to propose a framework for manifold regularization(MR) based distributed semi-supervised learning(DSSL) using single layer feed-forward neural network(SLFNN). The proposed framework, denoted as DSSL-SL... This paper aims to propose a framework for manifold regularization(MR) based distributed semi-supervised learning(DSSL) using single layer feed-forward neural network(SLFNN). The proposed framework, denoted as DSSL-SLFNN is based on the SLFNN, MR framework, and distributed optimization strategy. Then, a series of algorithms are derived to solve DSSL problems. In DSSL problems, data consisting of labeled and unlabeled samples are distributed over a communication network, where each node has only access to its own data and can only communicate with its neighbors. In some scenarios, DSSL problems cannot be solved by centralized algorithms. According to the DSSL-SLFNN framework, each node over the communication network exchanges the initial parameters of the SLFNN with the same basis functions for semi-supervised learning(SSL). All nodes calculate the global optimal coefficients of the SLFNN by using distributed datasets and local updates. During the learning process, each node only exchanges local coefficients with its neighbors rather than raw data. It means that DSSL-SLFNN based algorithms work in a fully distributed fashion and are privacy preserving methods. Finally, several simulations are presented to show the efficiency of the proposed framework and the derived algorithms. 展开更多
关键词 Distributed learning(DL) semi-supervised learning(SSL) manifold regularization(MR) single layer feed-forward neural network(SLFNN) privacy preserving
原文传递
基于CNN-LSTM电力消耗预测模型及系统开发
6
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
在线阅读 下载PDF
基于小波神经网络的激光主动成像视觉图像去噪方法
7
作者 杨惠烽 曹建芳 《激光杂志》 CAS 北大核心 2024年第11期123-127,共5页
激光主动成像技术在许多领域中发挥着重要作用,然而,由于成像过程中会受到各种因素的干扰,导致图像产生噪声,影响后续的信息提取和处理,设计基于小波神经网络的激光主动成像视觉图像去噪方法。设计基于图像配准算法的超分辨率重构方法,... 激光主动成像技术在许多领域中发挥着重要作用,然而,由于成像过程中会受到各种因素的干扰,导致图像产生噪声,影响后续的信息提取和处理,设计基于小波神经网络的激光主动成像视觉图像去噪方法。设计基于图像配准算法的超分辨率重构方法,将每个子区域的多帧光斑图像集中起来实施矫正图像间差异的处理。鉴于激光成像所捕获的彩色图像富含基原色,这导致了庞大的数据量和处理上的效率瓶颈。为了优化后续的预处理和识别流程,使用平均值法实施图像的灰度化处理。设计单隐层结构的小波神经网络结构,在输入层中仅设置一个节点,用以接收输入信息,在输出层中仅设置一个节点,负责输出处理后的结果,根据设计方法确定隐层节点数,样本数量取用于学习的图像像素数量值,实现激光主动成像视觉图像的去噪处理。实验测试结果表明,设计方法的去噪图像比较清晰同时保留了图像细节,range指标差异较小,去噪后图像的像素分布比较均匀。 展开更多
关键词 小波神经网络 激光主动成像视觉图像 超分辨率重构 图像配准 隐层 图像去噪
在线阅读 下载PDF
基于机器学习算法的青少年电子烟使用及影响因素分析 被引量:2
8
作者 徐心怡 朱平华 +8 位作者 罗娜 蒋碧玲 张秀岚 白思怡 王宣伊 黄靖语 刘苏仪 潘怡双 谭琼 《广西医科大学学报》 CAS 2024年第1期117-123,共7页
目的:了解广西某市15岁以上青少年吸电子烟现状及影响因素,为控制电子烟在青少年中的流行提供资料参考。方法:通过多阶段分层整群随机抽样对广西某市15岁以上青少年进行问卷调查,综合运用logistic回归、随机森林、XGboost、支持向量机... 目的:了解广西某市15岁以上青少年吸电子烟现状及影响因素,为控制电子烟在青少年中的流行提供资料参考。方法:通过多阶段分层整群随机抽样对广西某市15岁以上青少年进行问卷调查,综合运用logistic回归、随机森林、XGboost、支持向量机模型、单隐藏层神经网络、KNN模型进行影响因素分析。结果:广西某市15岁以上青少年电子烟使用率为1.68%,其中高中生、职高生电子烟使用率分别为1.08%、1.74%;不同的机器学习模型在各项评价指标的表现上各有优劣;青少年使用电子烟的9个主要影响因素包括:过去30 d是否在互联网上看到电子烟广告、朋友是否吸烟、学习压力水平、是否看到过老师吸烟、抑郁情况、性别、公共场合是否看到有人吸烟、吸烟是否使年轻人具有吸引力、是否有人给免费烟草产品。结论:广西某市15岁以上青少年电子烟使用率相对较低,可将6种机器学习模型的结果结合起来对青少年电子烟使用行为进行预测,判断使用人群的特征。 展开更多
关键词 青少年 电子烟 机器学习 LOGISTIC回归模型 随机森林模型 XGboost模型 支持向量机模型 单隐藏层神经网络模型 KNN模型
在线阅读 下载PDF
基于特征工程的S-FCN火灾图像检测方法
9
作者 李海 熊升华 孙鹏 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期191-201,共11页
针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维... 针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维;其次,简化深度学习模型的网络结构,将单隐层全连接网络作为其主干网络,其中,多色彩空间下的颜色特征能够更好地表征火灾烟雾与火焰,多色彩空间颜色特征降维能够有效降低输入特征的冗余度,单隐层全连接网络能够有效减少模型在传递过程中的参数数量;最后,将该方法在真实的复杂背景火灾图像数据集上进行试验评估。结果表明:所提方法取得的检测精度为93.83%,取得的检测实时性帧率为10869帧/s,能够实现复杂场景下高精度、高速度的火灾图像检测。 展开更多
关键词 特征工程 单隐层全连接网络(S-FCN) 火灾图像 检测方法 色彩空间 特征降维
在线阅读 下载PDF
基于MFO-BP算法的移动机器人定位研究
10
作者 陈泉 王湘江 《自动化仪表》 CAS 2024年第7期40-44,共5页
针对移动机器人定位问题,以自主搭建的复合式机器人为基础,提出一种基于飞蛾火焰优化-反向传播(MFO-BP)算法的移动机器人定位预测方法。将移动机器人视为一个“黑箱”,不单独考虑系统和非系统误差的影响,输入理论坐标值,输出预测坐标值... 针对移动机器人定位问题,以自主搭建的复合式机器人为基础,提出一种基于飞蛾火焰优化-反向传播(MFO-BP)算法的移动机器人定位预测方法。将移动机器人视为一个“黑箱”,不单独考虑系统和非系统误差的影响,输入理论坐标值,输出预测坐标值。试验结果表明,MFO-BP算法预测模型能有效进行移动机器人定位预测,并且精度远高于传统反向传播(BP)神经网络预测模型。为了验证模型结构对预测结果的影响,将MFO-BP算法预测模型分为单隐含层和双隐含层这两种。试验结果显示,MFO-BP算法双隐含层与单隐含层相比,前者平均绝对误差更小、误差波动范围也更小、预测误差趋势更平稳。MFO-BP算法双隐含层预测效果更优,可以应用于复合式机器人末端定位。 展开更多
关键词 移动机器人 定位 预测模型 飞蛾火焰优化算法 反向传播神经网络 隐含层
在线阅读 下载PDF
基于BP神经网络的刀片切割竹枝性能研究
11
作者 杨梦迪 周兆兵 +1 位作者 孙炜 商庆清 《林业机械与木工设备》 2024年第3期4-9,共6页
为探究竹枝切割时的刀片切割性能影响因素,支持后续打枝装置的设计,开展竹枝切割刀片性能研究试验,通过单因素试验研究,利用切割阻力作为衡量标准,探究刀片切割性能与关键参数(刀片的滑动角、楔角和滑动速度)之间的相互关系。试验结果显... 为探究竹枝切割时的刀片切割性能影响因素,支持后续打枝装置的设计,开展竹枝切割刀片性能研究试验,通过单因素试验研究,利用切割阻力作为衡量标准,探究刀片切割性能与关键参数(刀片的滑动角、楔角和滑动速度)之间的相互关系。试验结果显示,随着刀片滑动角和楔角的减小,刀片切割性能呈现明显改善。同时,随着刀片滑动速度的增加,切割性能也呈现相应提升趋势。在多组实验中,采用不同的刀片滑切角度、楔角和滑切速度参数,对不同直径尺寸的竹枝进行切割,并收集了切割阻力的数据构成数据集,构建一个3层BP神经网络模型,研究了刀片切割性能与滑切角度、楔角以及滑切速度之间的关联,并应用相关模型进行了拟合和预测。在BP神经网络中,当隐含层节点数设定为9时,成功建立了刀片切割阻力模型,精准地预测了刀片切割过程中的阻力变化,对刀片切割竹枝性能研究具有一定参考价值。 展开更多
关键词 竹枝切割 试验 刀片切割性能 BP神经网络 隐含层节点数
在线阅读 下载PDF
基于BP神经网络隐层结构的研究及实例 被引量:1
12
作者 邱丹萍 《长江信息通信》 2024年第7期8-10,共3页
BP神经网络是神经网络中应用最为普遍的一种网络,随着人工智能技术的发展,各行各业也逐渐将BP神经网络运用在生活中,比如预测、推荐、识别等领域,都取得了一定的效果。但随着数据量的递增,BP神经网络也在进行预测时也有梯度下降等问题,... BP神经网络是神经网络中应用最为普遍的一种网络,随着人工智能技术的发展,各行各业也逐渐将BP神经网络运用在生活中,比如预测、推荐、识别等领域,都取得了一定的效果。但随着数据量的递增,BP神经网络也在进行预测时也有梯度下降等问题,许多专家也在不断对算法及网络结构进行调整。BP网络隐层结构的设计一直是不确定的,尤其是隐层单元数的确定缺乏理论依据,设计者大多依靠经验来确定。对于神经网络中BP网络的运用最为广泛,其中之一就是在函数收敛上的运用。文章主要是通过研究隐层层数和单元数的确定问题,来分析BP网络上的函数收敛性,通过比较在不同隐层层数和隐层节点下的收敛性来研究隐层结构对函数收敛性的影响,并将分析结果运用在股票预测中,实践表明,确定隐层节点数能在一定程度上改进预测误差。 展开更多
关键词 BP神经网络 隐层结构 函数拟合 预测
在线阅读 下载PDF
基于自组织聚类和JS散度的RBF神经网络
13
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 RBF神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
在线阅读 下载PDF
多层人工神经网络合理结构的确定方法 被引量:37
14
作者 侯祥林 胡英 +1 位作者 李永强 徐心和 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期35-38,共4页
隐层结构如何选择是多层人工神经网络应用中一个关键问题·基于多层神经网络优化算法原理和非线性方程理论,建立了多层神经网络计算输出和理想输出关系的非线性方程组,分析了权阈变量、标准样本数量和输出层单元数量的内在关系,给... 隐层结构如何选择是多层人工神经网络应用中一个关键问题·基于多层神经网络优化算法原理和非线性方程理论,建立了多层神经网络计算输出和理想输出关系的非线性方程组,分析了权阈变量、标准样本数量和输出层单元数量的内在关系,给出隐层层数和每个隐层单元数量选取应该满足的基本条件·提出多层神经网络合理结构,即隐层层数和每个隐层单元数量选取的一般原则,给出隐层结构定量求解的直接计算方法和间接优化计算方法·对具体算例进行了合理结构分析,通过神经网络优化算法对多种结构组合比较,表明所提出的合理结构分析方法的正确性·这种方法将为多层神经网络在工程应用中如何选取合理结构提供理论依据和选取有效方法· 展开更多
关键词 多层人工神经网络 隐层结构分析 隐层层数 隐层单元数量 非线性方程组 优化算法
在线阅读 下载PDF
前向神经网络隐含层节点数的一种优化算法 被引量:123
15
作者 夏克文 李昌彪 沈钧毅 《计算机科学》 CSCD 北大核心 2005年第10期143-145,共3页
由于前向神经网络隐含层节点数的确定尚无理论依据,为此提出一种基于黄金分割原理的优化算法,首先确定网络隐含层节点数频繁出现的区间范围;将网络总误差作为试验结果,然后利用黄金分割法搜索其区间中的理想数值;兼顾高精度的需要,将隐... 由于前向神经网络隐含层节点数的确定尚无理论依据,为此提出一种基于黄金分割原理的优化算法,首先确定网络隐含层节点数频繁出现的区间范围;将网络总误差作为试验结果,然后利用黄金分割法搜索其区间中的理想数值;兼顾高精度的需要,将隐含层节点数频繁出现的区间作拓展,可以求得逼近能力更强的节点数。算法分析和仿真例子表明,此优化算法是切实可行的,不仅能找到理想的隐含层节点数,而且能起到节省成本、提高搜索效率等功效。 展开更多
关键词 前向神经网络 隐含层节点数 黄金分割 优化算法 前向神经网络 优化算法 节点数 隐含层 黄金分割法 搜索效率 算法分析 逼近能力 总误差
在线阅读 下载PDF
关于BP网络变结构问题的研究 被引量:12
16
作者 郝培锋 肖文栋 +1 位作者 祝钢 徐心和 《控制与决策》 EI CSCD 北大核心 2001年第3期287-298,共12页
BP神经网络的收敛性涉及诸如网络初始权重赋值、隐结点个数以及隐层个数等问题。通过对BP神经网络隐结点个数的讨论 ,以及对 BP神经网络训练样本空间的研究 ,得出了一个重要结论 ,即网络结构可以随训练样本空间进行变换 ,从而使 BP神经... BP神经网络的收敛性涉及诸如网络初始权重赋值、隐结点个数以及隐层个数等问题。通过对BP神经网络隐结点个数的讨论 ,以及对 BP神经网络训练样本空间的研究 ,得出了一个重要结论 ,即网络结构可以随训练样本空间进行变换 ,从而使 BP神经网络能够进行结构化简。 展开更多
关键词 BP神经网络 变结构 阈值 学习算法
在线阅读 下载PDF
隐含层对人工神经元网络电压安全评估的影响 被引量:9
17
作者 付英 曾敏 +2 位作者 李兴源 刘俊勇 王贵德 《电力系统自动化》 EI CSCD 北大核心 1996年第11期13-16,22,共5页
电力系统电压安全评估对电力系统运行与控制的安全性、稳定性是极其重要的。隐含层对人工神经元网络(ANN)训练的速度、精度和收敛性有很大的影响。该文利用ANN对某一实际电力系统进行电压安全评估。
关键词 神经网络 电压 安全 电力系统
在线阅读 下载PDF
神经网络在电力负荷预测中的应用 被引量:10
18
作者 刘瑾 杨海马 +1 位作者 陈抱雪 曾启澔 《自动化仪表》 CAS 北大核心 2012年第9期21-24,共4页
在短期负荷预测过程中,引起负荷变动的因素与负荷之间的非线性映射关系是造成预测结果与实际结果之间存在偏差的原因之一。神经网络具有很强的非线性映射能力和自学习能力。为提高短期负荷预测的精度,基于神经网络的研究方法,设计了预... 在短期负荷预测过程中,引起负荷变动的因素与负荷之间的非线性映射关系是造成预测结果与实际结果之间存在偏差的原因之一。神经网络具有很强的非线性映射能力和自学习能力。为提高短期负荷预测的精度,基于神经网络的研究方法,设计了预测网络。该网络以洋山深水港东港路10 kV开关站中沈家湾的日负荷数据为样本,对采集电量进行了预处理;然后对其隐层个数及节点个数进行了分析设计;最后对短期日负荷进行预测。对比结果表明,预测值与实际值吻合较好。 展开更多
关键词 负荷预测 非线性映射 神经网络 预处理 隐层 节点
在线阅读 下载PDF
基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制 被引量:12
19
作者 朱亮 姜长生 薛雅丽 《兵工学报》 EI CAS CSCD 北大核心 2008年第1期52-56,共5页
研究了一种新的空天飞行器鲁棒自适应轨迹线性化飞行控制系统设计方案。利用单隐层神经网络的逼近能力在线估计系统中存在的不确定性,神经网络输出用以抵消不确定性对轨迹线性化方法控制性能的影响。鲁棒自适应控制器用以克服逼近误差,... 研究了一种新的空天飞行器鲁棒自适应轨迹线性化飞行控制系统设计方案。利用单隐层神经网络的逼近能力在线估计系统中存在的不确定性,神经网络输出用以抵消不确定性对轨迹线性化方法控制性能的影响。鲁棒自适应控制器用以克服逼近误差,并使闭环系统具有更好的性能。严格的理论证明表明,给定的自适应调节律能够保证闭环系统跟踪误差最终收敛至任意小紧集。空天飞行器高超声速飞行条件下的仿真结果表明,即使在很恶劣的条件下,新方法仍然表现出很好的响应性能。 展开更多
关键词 飞行器控制 导航技术 轨迹线性化控制 单隐层神经网络 高超声速
在线阅读 下载PDF
BP人工神经网络隐层结构设计的研究进展 被引量:70
20
作者 范佳妮 王振雷 钱锋 《控制工程》 CSCD 2005年第S1期109-113,共5页
指出BP人工神经网络隐层结构的确定,尤其是隐层神经元数目的选择历来是研究的热点。针对目前解决这一问题尚缺乏严格的理论依据,设计者多凭经验而定,介绍了用来优化设计隐层结构的可行方法,纵览了现有多种设计研究成果,从而探讨了新的... 指出BP人工神经网络隐层结构的确定,尤其是隐层神经元数目的选择历来是研究的热点。针对目前解决这一问题尚缺乏严格的理论依据,设计者多凭经验而定,介绍了用来优化设计隐层结构的可行方法,纵览了现有多种设计研究成果,从而探讨了新的设计方向。分析了网络隐层结构优化问题的产生及其理论依据,对各种设计方法进行了详细的分类综述, 探讨各自的优势与不足,并对神经网络结构优化问题的研究和发展做了评述与展望。 展开更多
关键词 BP神经网络 隐层结构设计 修剪法 增长法 遗传算法
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部