The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ...The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.展开更多
This paper aims to propose a framework for manifold regularization(MR) based distributed semi-supervised learning(DSSL) using single layer feed-forward neural network(SLFNN). The proposed framework, denoted as DSSL-SL...This paper aims to propose a framework for manifold regularization(MR) based distributed semi-supervised learning(DSSL) using single layer feed-forward neural network(SLFNN). The proposed framework, denoted as DSSL-SLFNN is based on the SLFNN, MR framework, and distributed optimization strategy. Then, a series of algorithms are derived to solve DSSL problems. In DSSL problems, data consisting of labeled and unlabeled samples are distributed over a communication network, where each node has only access to its own data and can only communicate with its neighbors. In some scenarios, DSSL problems cannot be solved by centralized algorithms. According to the DSSL-SLFNN framework, each node over the communication network exchanges the initial parameters of the SLFNN with the same basis functions for semi-supervised learning(SSL). All nodes calculate the global optimal coefficients of the SLFNN by using distributed datasets and local updates. During the learning process, each node only exchanges local coefficients with its neighbors rather than raw data. It means that DSSL-SLFNN based algorithms work in a fully distributed fashion and are privacy preserving methods. Finally, several simulations are presented to show the efficiency of the proposed framework and the derived algorithms.展开更多
文摘The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.
基金supported by National Natural Science Foundation of China (Nos. 61877047, 61877046, 62106186 and 62063031)the Fundamental Research Funds for the Central Universities (Nos. JB210701 and JB210718)。
文摘This paper aims to propose a framework for manifold regularization(MR) based distributed semi-supervised learning(DSSL) using single layer feed-forward neural network(SLFNN). The proposed framework, denoted as DSSL-SLFNN is based on the SLFNN, MR framework, and distributed optimization strategy. Then, a series of algorithms are derived to solve DSSL problems. In DSSL problems, data consisting of labeled and unlabeled samples are distributed over a communication network, where each node has only access to its own data and can only communicate with its neighbors. In some scenarios, DSSL problems cannot be solved by centralized algorithms. According to the DSSL-SLFNN framework, each node over the communication network exchanges the initial parameters of the SLFNN with the same basis functions for semi-supervised learning(SSL). All nodes calculate the global optimal coefficients of the SLFNN by using distributed datasets and local updates. During the learning process, each node only exchanges local coefficients with its neighbors rather than raw data. It means that DSSL-SLFNN based algorithms work in a fully distributed fashion and are privacy preserving methods. Finally, several simulations are presented to show the efficiency of the proposed framework and the derived algorithms.