Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, an...Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.展开更多
Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Resu...Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Results showed that under the effect of pulse-impact: 1) the interface state between reinforcement particle (SiC, Al2O3) and matrix was prominently;2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC, Al2O3)/reinforcement (SiC, Al2O3) to reinforcement (SiC, Al2O3)/matrix/ reinforcement (SiC, Al2O3);3) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite;and 4) the intensively mutual entwisting of dislocation was occurred. Studies illustrated that: 1) deformation was mainly occurred in the matrix grain;and 2) under the effect of pulse-impact, the matrices around reinforcement (SiC, Al2O3) particles engendered intensive aberration offered a high density nucleus area for matrix crystal, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints.展开更多
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an ine...The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.展开更多
A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large...A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4 C particles(larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B_4 C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B_4 C and large size of the added B_4 C particles were the three key parameters responsible for B_4 C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution.展开更多
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i...Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes.展开更多
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The...Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.展开更多
Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the...Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al_2O_(3sf) on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al_2O_(3sf), characterized by the ratio of Al_2O_(3sf) to SiC_p, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al_2O_(3sf) to SiC_p was increased from 0 to 1, the rate of wear mass loss(K_m) and coefficients of friction(COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K_m increased rapidly and the wear mechanism became adhesive wear.展开更多
(38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microst...(38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The results showed that the composite with 15 μm graphite powder as a forming filler had the maximum tensile strength of 506 MPa, maximum yield strength of 489 MPa, and maximum elongation of 1.2%, which decreased to 490 MPa, 430 MPa, and 0.4%, respectively, on increasing the graphite powder size from 15 to 60 μm. The composite with 60 μm graphite powder showed the highest elastic modulus, and the value decreased from 129 to 113 GPa on decreasing the graphite powder size from 60 to 15 μm. The differences between these properties are related to the different microstructures of the corresponding composites, which determine their failure modes.展开更多
在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(...在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。展开更多
文摘Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.
文摘Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Results showed that under the effect of pulse-impact: 1) the interface state between reinforcement particle (SiC, Al2O3) and matrix was prominently;2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC, Al2O3)/reinforcement (SiC, Al2O3) to reinforcement (SiC, Al2O3)/matrix/ reinforcement (SiC, Al2O3);3) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite;and 4) the intensively mutual entwisting of dislocation was occurred. Studies illustrated that: 1) deformation was mainly occurred in the matrix grain;and 2) under the effect of pulse-impact, the matrices around reinforcement (SiC, Al2O3) particles engendered intensive aberration offered a high density nucleus area for matrix crystal, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints.
文摘The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.
文摘A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4 C particles(larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B_4 C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B_4 C and large size of the added B_4 C particles were the three key parameters responsible for B_4 C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution.
文摘Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes.
文摘Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)
文摘Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al_2O_(3sf) on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al_2O_(3sf), characterized by the ratio of Al_2O_(3sf) to SiC_p, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al_2O_(3sf) to SiC_p was increased from 0 to 1, the rate of wear mass loss(K_m) and coefficients of friction(COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K_m increased rapidly and the wear mechanism became adhesive wear.
基金funded by the National Natural Science Foundation of China (Grant No. 51174029 and No. 51374028)National High Technology Research and Development Program of China (No. 2013AA031005)Beijing Higher Education Young Elite Teacher Project (No. YETP0417)
文摘(38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The results showed that the composite with 15 μm graphite powder as a forming filler had the maximum tensile strength of 506 MPa, maximum yield strength of 489 MPa, and maximum elongation of 1.2%, which decreased to 490 MPa, 430 MPa, and 0.4%, respectively, on increasing the graphite powder size from 15 to 60 μm. The composite with 60 μm graphite powder showed the highest elastic modulus, and the value decreased from 129 to 113 GPa on decreasing the graphite powder size from 60 to 15 μm. The differences between these properties are related to the different microstructures of the corresponding composites, which determine their failure modes.
基金sponsored by the National Natural Science Foundation of China(Nos.12105017,51671032)Beijing Municipal Natural Science Foundation,China(No.2172029)。
文摘在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。