期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes 被引量:1
1
作者 Ying-Ying Yang Pei Gong +2 位作者 Wan-Duo Ma Rui Hao Xiao-Yong Fang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期602-609,共8页
Silicon carbide nanotubes(SiCNTs) have broad application prospects in the field of micro-nanodevices due to their excellent physical properties. Based on first-principles, the difference between optical properties of ... Silicon carbide nanotubes(SiCNTs) have broad application prospects in the field of micro-nanodevices due to their excellent physical properties. Based on first-principles, the difference between optical properties of SiCNTs where C atom or Si atom is replaced by group-V element is studied. The results show that the optical absorptions of SiCNTs doped by different elements are significantly different in the band of 600 nm–1500 nm. The differences in photoconductivity, caused by different doping elements, are reflected mainly in the band above 620 nm, the difference in dielectric function and refractive index of SiCNTs are reflected mainly in the band above 500 nm. Further analysis shows that SiCNTs doped with different elements change their band structures, resulting in the differences among their optical properties. The calculation of formation energy shows that SiCNTs are more stable when group-V element replaces Si atom, except N atom. These research results will be beneficial to the applications of SiC nanomaterials in optoelectronic devices and provide a theoretical basis for selecting the SiCNTs' dopants. 展开更多
关键词 silicon carbide nanotubes group-V doped optical properties first-principles theory
在线阅读 下载PDF
Silicon carbide nanotubes with special morphology prepared by super critical hydrothermal method and photoluminescence character 被引量:1
2
作者 郭池 唐元洪 +1 位作者 裴立宅 张勇 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期538-541,共4页
Silicon carbide nanotubes(SiCNTs) with special morphology synthesized by supercritical hydrothermal method at 470 C and 8 MPa have been reported in this paper.SiCNTs with special morphology were characterized by tra... Silicon carbide nanotubes(SiCNTs) with special morphology synthesized by supercritical hydrothermal method at 470 C and 8 MPa have been reported in this paper.SiCNTs with special morphology were characterized by transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).There are two kinds of silicon carbide with special morphology:One is oval SiCNTs with small aspect ratio,the other is bamboo cone-shape structure.SiCNTs have been analyzed by fluorescence spectrometer.The results indicate that the SiCNTs have strong photoluminescence(PL) property.The SiCNTs with oval shape are one kind of intermediate state of growth process of nanotube.The growth mechanism of silicon nanotubes has been proposed based on experiment data.The investigations of growth mechanism of SiCNTs with bamboo structure show that the defect produced in the growth process play the important role in SiCNTs with special structure. 展开更多
关键词 silicon carbide nanotubes(SiCNTs) supercritical hydrothermal method photoluminescence(PL)
在线阅读 下载PDF
Structural feature and electronic property of an (8, 0) carbon-silicon carbide nanotube heterojunction 被引量:4
3
作者 刘红霞 张鹤鸣 +1 位作者 胡辉勇 宋久旭 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期734-737,共4页
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry ... A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively. 展开更多
关键词 carbon nanotube/silicon carbide nanotube heterojunction electronic properties average-bond-energy method band offsets
在线阅读 下载PDF
Electronic transport properties of the armchair silicon carbide nanotube
4
作者 宋久旭 杨银堂 +2 位作者 刘红霞 郭立新 张志勇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第11期15-17,共3页
The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium tr... The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium transmission spectrum of the nanotube,a transmission valley of about 2.12 eV is discovered around Fermi energy,which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important,negative differential resistance is found in its current voltage characteristic.This phenomenon originates from the variation of density of states caused by applied bias voltage.These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices. 展开更多
关键词 electronic transport properties armchair silicon carbide nanotube negative differential resistance non-equilibrium Green's function
原文传递
Electronic transport properties of an (8,0) carbon/silicon-carbide nanotube heterojunction
5
作者 刘红霞 张鹤鸣 张志勇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第5期5-8,共4页
A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining n... A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining nonequilibrium Green's function (NEGF) with density functional theory (DFF), the transport properties of the het-erojunction were investigated. Our study reveals that the highest occupied molecular orbital (HOMO) has a higher electron density on the CNT section and the lowest unoccupied molecular orbital (LUMO) mainly concentrates on the interface and the SiCNT section. The positive and negative threshold voltages are +1.8 and -2.2 V, respectively. 展开更多
关键词 carbon/silicon carbide nanotube heterojunction nonequilibrium Green's function transport properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部