期刊文献+
共找到483篇文章
< 1 2 25 >
每页显示 20 50 100
Short Term Traffic Flow Prediction Using Hybrid Deep Learning
1
作者 Mohandu Anjaneyulu Mohan Kubendiran 《Computers, Materials & Continua》 SCIE EI 2023年第4期1641-1656,共16页
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil... Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%. 展开更多
关键词 short term traffic flow prediction principal component analysis stacked auto encoders long short term memory k nearest neighbors:intelligent transportation system
在线阅读 下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
2
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 RBF 交通 预言 短期 ARIMA
在线阅读 下载PDF
基于VMD多阶段优化的短时交通流预测研究
3
作者 陈以 齐兴宇 +1 位作者 胡水源 姚宇琛 《计算机仿真》 2025年第1期126-132,共7页
针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用... 针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用变分模态分解(Variational Modal Decomposition, VMD)将交通流分解,借助样本熵(Sample Entropy, SE)将子序列重组,得到趋势、细节和随机分量并采用相空间重构算法(Phase Space Reconstruction, PSR)对其进行处理。通过4个基准函数验证IDOA算法性能。对重构后的分量分别建立IDOA-LSSVM,IDOA-LSTM以及IDOA-XGBoost三个子模型,叠加各子模型的预测值得到预测结果。实验结果表明:其它预测模型相比,上述模型预测精度均有不同程度的提升,输出的预测结果更接近真实值。 展开更多
关键词 短时交通流预测 组合预测模型 改进澳洲野狗优化算法 变分模态分解 样本熵
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
4
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory LSTM)
在线阅读 下载PDF
CPO-BiLSTM模型在短时交通流预测中的应用
5
作者 庄伟卿 余晗彧 《交通科技与经济》 2025年第1期1-7,共7页
短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适... 短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适应和全局均衡特性对双向长短期记忆网络(BiLSTM)的超参数进行寻优赋值,进而提升模型的泛化能力与训练效率。采用公路交通流数据集,将CPO-BiLTM模型与其他预测模型进行训练和测试比对分析,结果表明CPO-BiLSTM拥有更好的时间序列数据拟合能力,其平均绝对误差为16.8982、均方根误差为23.4424、决定系数为0.98229、剩余预测偏差为7.5159、平均绝对百分比误差为3.4243%,均为最优项,说明该模型能够有效提高预测的准确度和可靠性。 展开更多
关键词 公路交通 智能交通系统 短时交通流预测 冠豪猪优化算法 双向长短期记忆网络
在线阅读 下载PDF
结合GCN和LSTM考虑时空信息的城市交通流量预测
6
作者 李正楠 赵智辉 《吉林大学学报(信息科学版)》 2025年第1期187-194,共8页
针对当前交通流量的智能预测方法没有分析和考虑路网的时空关联性问题,在智能预测方法中增加了时空关联性信息,解决了时空信息缺失造成的预测精度降低的问题。首先结合交通路网的图连接和车辆通行延时特性,分析城市路网的时空关联性;考... 针对当前交通流量的智能预测方法没有分析和考虑路网的时空关联性问题,在智能预测方法中增加了时空关联性信息,解决了时空信息缺失造成的预测精度降低的问题。首先结合交通路网的图连接和车辆通行延时特性,分析城市路网的时空关联性;考虑城市交通时空关联情况,基于图卷积神经网络(GCN:Graph Convolutional Neural)和长短期记忆网络(LSTM:Long Short-Term Memory)方法,研究了结合GCN、LSTM考虑时空信息的城市交通流量预测方法,应用开源的城市交通流量数据集优化训练了城市交通流量预测网络,并对比LSTM、双向长短期记忆网络(BiLSTM:Bidirectional Long Short-Term Memory)及不同网络节点数目在求解该交通流量预测问题的表现。研究结果表明,该方法可以有效预测城市交通流量,相对未考虑时空信息的预测方法准确度有所提升,该研究可为智慧交通系统中的交通预测提供理论参考。 展开更多
关键词 图卷积神经网络 长短期记忆网络 城市交通 车流预测 时空信息
在线阅读 下载PDF
基于多数据融合的短时交通流量预测算法研究
7
作者 于欣海 《自动化仪表》 2025年第1期122-126,共5页
针对单一模型无法分析复杂、非线性交通流数据的问题,在多平台数据融合的基础上提出了一种面向短时交通流量的组合预测算法。对于交通流数据具备的时间性和空间性特征,首先使用径向基函数(RBF)神经网络对相邻节点的空间交通流数据进行分... 针对单一模型无法分析复杂、非线性交通流数据的问题,在多平台数据融合的基础上提出了一种面向短时交通流量的组合预测算法。对于交通流数据具备的时间性和空间性特征,首先使用径向基函数(RBF)神经网络对相邻节点的空间交通流数据进行分析,然后利用ResNet对RBF神经网络效率低的缺陷加以改进,最后通过双向长短期记忆(LSTM)网络的时间序列分析能力提取交通流数据的时间特征。同时,引入了萤火虫算法对时空模型的参数进行优化。对基于公共数据集获取到的车辆、天气、高速公路等多平台信息进行了试验。相较于对比算法,所提算法的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)指标均最优,预测值与实际流量值最接近。该算法的综合性能较理想,且鲁棒性较强。 展开更多
关键词 多平台数据融合 径向基函数 残差网络 萤火虫算法 长短期记忆网络 交通流量预测 时空模型
在线阅读 下载PDF
时空相关的道路网络短时交通流预测模型 被引量:1
8
作者 张俊溪 曲仕茹 +1 位作者 张志腾 毕杨 《北京交通大学学报》 CAS CSCD 北大核心 2024年第3期74-82,共9页
为有效解决复杂路网短时交通流预测问题中涉及的时空特征挖掘问题,提出一种基于改进长短时记忆神经网络(Improved Long Short-Term Memory, ILSTM)的交通流预测模型.首先,通过改进的遗传算法对长短时记忆神经网络(Long Short-Term Memor... 为有效解决复杂路网短时交通流预测问题中涉及的时空特征挖掘问题,提出一种基于改进长短时记忆神经网络(Improved Long Short-Term Memory, ILSTM)的交通流预测模型.首先,通过改进的遗传算法对长短时记忆神经网络(Long Short-Term Memory, LSTM)模型初始参数进行优化获得最优参数组合,解决LSTM初始参数设置对输出结果影响较大的问题.其次,针对复杂路网多路段交通流预测中遇到的空间特征提取问题,通过挖掘相关路段对目标路段交通流预测的影响程度,重新构建LSTM模型的损失函数,采用路网中相关路段对目标路段的影响系数,以损失函数输出值最小为终止条件,构建ILSTM模型.最后,选择加州公路局交通数据进行模型验证实验,采用遗传算法优化LSTM模型(Genetic Algorithm-LSTM, GA-LSTM)和单纯LSTM模型,以及皮尔森相关系数与LSTM组合模型(Pearson Correlation Coefficient-LSTM,PCC-LSTM),对工作日和周末数据的多次实验结果进行对比分析.实验结果表明:ILSTM模型能够充分考虑复杂路网交通流的时间和空间特征,预测平均误差约为1.16%,在收敛效率和预测精度方面均优于其他模型. 展开更多
关键词 智能交通 短时交通流预测 时空相关 长短时记忆神经网络 损失函数
在线阅读 下载PDF
基于组合深度学习的轨道交通短时进站客流预测模型 被引量:5
9
作者 李淑庆 李伟 +1 位作者 刘耀鸿 马波 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期92-99,共8页
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷... 针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷积神经网络(CNN)对多因素客流时间序列进行自动提取,在CNN网络中插入多个残差神经网络(ResNet)来加深网络深度,利用双向长短时记忆神经网络(BiLSTM)捕捉前后两个方向的客流时间序列特征并得到预测结果;以杭州市全网80个站点工作日的进站客流为例,验证了该模型的有效性。研究结果表明:与常用的几种模型相比,多因素CNN-ResNet-BiLSTM组合模型的均方根误差(E RMS)至少降低了8.50%,平均绝对误差(E MA)至少降低了6.74%,平均绝对百分比误差(E MPA)至少降低了6.52%。 展开更多
关键词 交通工程 短时客流预测 组合深度学习 轨道进站客流
在线阅读 下载PDF
基于ARMA-AE-LSTM模型的进场交通流预测方法
10
作者 张召悦 张红波 《科学技术与工程》 北大核心 2024年第27期11919-11927,共9页
为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short te... 为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short term memory,LSTM)模型对线性预测后的残差序列进行非线性修正预测。考虑到冗余特征会降低LSTM模型预测精度的问题,采用自编码器(autoencoder,AE)模型对LSTM模型的天气以及流量特征输入进行自适应压缩优化,最后设置对比实验对ARMA-AE-LSTM模型的准确性、鲁棒性以及时效性进行验证。实验结果表明:预测绝对误差在1.3架以内的占比达到75%;LSTM模型的平均每轮迭代时间降低为1.014 s;与其他常用深度学习预测模型相比,ARMA-AE-LSTM模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)以及决定系数(r-squared,R2)评价指标分别改善了45.98%~67.66%、48.56%~67.35%、5.18%~21.07%;恶劣天气影响下,ARMA-AE-LSTM模型的鲁棒性更好。由此可见,该方法能够准确有效快速的预测空中交通流量。 展开更多
关键词 终端区 进场交通流 短期流量预测 深度学习 残差修正
在线阅读 下载PDF
基于二次分解集成的机场流量短期预测
11
作者 王飞 韩翔宇 《中国民航大学学报》 CAS 2024年第6期52-60,共9页
为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3... 为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3个分量,并计算其样本熵。其次,应用遗传算法(GA,genetic algorithm)优化变分模态分解(VMD,variational mode decomposition)参数,对熵值较大的分量进行二次分解。再次,使用极端梯度提升(XGBoost,extreme gradient boosting)对二次分解后的所有分量进行预测,采用加和集成得到最终的预测值。最后,采集国内典型机场实际运行数据进行实例分析。针对北京首都国际机场60 min进场、离场流量时序,本文模型预测的均等系数(EC,equal coefficient)值分别为0.9703、0.9959,相比其他常用模型均有所提高。此外,对于上海浦东、上海虹桥、广州白云3个大型国际机场,本文模型在60 min、30 min统计尺度下进场和离场流量预测的EC值均在0.9700以上,15 min统计尺度下预测的EC值均在0.9500以上。结果表明,本文建立的二次分解集成预测模型具有良好的准确性和普适性,用于机场流量短期预测是可行和有效的。 展开更多
关键词 航空运输 空中交通流量管理 机场流量短期预测 分解集成预测 二次分解
在线阅读 下载PDF
基于PSO-LSTM的短时交通流量预测网站设计 被引量:1
12
作者 王宁 成利敏 +1 位作者 甄景涛 段晓霞 《廊坊师范学院学报(自然科学版)》 2024年第1期29-32,共4页
短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预... 短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预测,达到了更高的准确率。在此基础上,设计了一个交通流量预测网站更好地展示了预测结果,也方便用户随时查询。 展开更多
关键词 智能交通系统 短时交通流量预测 LSTM神经网络 PSO算法 交通流量预测网站
在线阅读 下载PDF
基于深度学习的短时交通流预测方法综述与仿真研究 被引量:2
13
作者 朱仕威 叶宝林 吴维敏 《软件导刊》 2024年第2期182-193,共12页
近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短... 近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短时交通流预测方法能充分利用海量交通流数据,深入挖掘路网中不同交通节点间流量的隐藏特征与复杂时空关联,能有效提升预测短时交通流的精度。首先,简要回顾短时交通流预测方法的发展历史,重点分析、讨论基于深度学习模型的短时交通流预测方法最新技术进展和理论研究结果。其次,梳理、总结国内外广泛用于验证算法有效性和进行比较分析的公开交通流数据集。再次,阐述基于深度学习模型的短时交通流预测算法解决实际交通流预测问题的具体过程和详细步骤,基于公开测试数据集PEMS04分别对基于深度学习模型长短时记忆网络(LSTM)和门控循环单元(GRU)的短时交通流预测算法进行仿真研究,以验证算法的有效性及其相较于传统方法的优势。最后,总结、展望基于深度学习模型的短时交通流预测方法在实际应用中存在的挑战和未来研究方向。 展开更多
关键词 短时交通流预测 深度学习 时间序列 交通数据集 卷积神经网络
在线阅读 下载PDF
基于XGBoost算法的高速公路短时交通流量预测 被引量:1
14
作者 赵霞 高源 +2 位作者 赵莉 唐嘉立 李之红 《市政技术》 2024年第10期31-36,共6页
在快速城市化背景下,高速公路交通流畅度对经济效率与民众生活至关重要,故在复杂多变的高速公路网中,快速精准预测交通流量成为实时交通管理的核心前提。然而,由于短时交通流具有非线性和随机变化的特点,交通流量的准确预测一直面临着... 在快速城市化背景下,高速公路交通流畅度对经济效率与民众生活至关重要,故在复杂多变的高速公路网中,快速精准预测交通流量成为实时交通管理的核心前提。然而,由于短时交通流具有非线性和随机变化的特点,交通流量的准确预测一直面临着巨大的挑战。为了克服这些挑战,构建了一种基于XGBoost算法的短时交通流量预测模型,旨在提高交通流量预测的准确性。该模型基于XGBoost算法的强大学习能力和优秀的泛化性能,通过对历史交通流量数据的学习,能够更好地捕捉交通流的复杂模式和规律。为了检验XGBoost模型的准确性和有效性,使用江西永武高速公路某路段ETC门架数据进行了一系列测试,并将结果与传统的ARIMA、BP、GBDT、Prophet模型进行了比较。实验结果表明,相比于传统的预测模型,XGBoost模型在短时交通流量预测中具有更高的预测精度。这将为公路交通管理部门提供更有效的决策支持,帮助其优化交通流,减少交通拥堵,提高交通运行效率。 展开更多
关键词 智能交通 短时交通流量预测 XGBoost ETC卡口 高速公路
在线阅读 下载PDF
结合变种残差模型和Transformer的城市公路短时交通流预测
15
作者 杨鑫 陈雪妮 +1 位作者 吴春江 周世杰 《计算机应用》 CSCD 北大核心 2024年第9期2947-2951,共5页
城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息... 城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息缺失等问题,对ConvLSTM模型作出改进。首先,提取每个采样时刻的交通流数据的短期时间特征和空间特征,并在特定的维度下将交通流的短期时空特征融合;其次,进行残差映射;最后,将映射后的短期时空特征交由Transformer模型捕捉交通流数据长期的时空特征,并根据所捕捉的长期特征对未来时刻每个采样点交通流进行预测。使用加州城市快速路数据对模型进行验证,以平均绝对误差(MAE)作为模型评价指标时,所提模型相较于Conv-Transformer模型,预测精度提高了18%,验证了所提模型的有效性。 展开更多
关键词 短时交通流预测 交通流 时空特征提取 残差结构 TRANSFORMER 组合模型
在线阅读 下载PDF
基于图Transformer网络的城市路网短时交通流预测模型 被引量:1
16
作者 周烽 王世璞 张坤鹏 《科学技术与工程》 北大核心 2024年第10期4307-4316,共10页
针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间... 针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间路网结构图,将带有边的图同构网络(graph isomorphism network with edges,GINE)和Transformer网络相结合,对交通状态在路网层面的时空相关性进行建模,从而实现城市路网短时交通流预测。具体来说,Graformer模型首先利用长短期记忆网络(long short-term memory,LSTM)对交通数据的时序信息进行预处理,接着采用基于GINE与Transformer的全局注意力机制提取交通数据的空间特征,最后实现路网各路段交通流的同步预测。 展开更多
关键词 短时交通流预测 图同构网络 TRANSFORMER 时空相关性
在线阅读 下载PDF
基于CS算法优化的SVM短时交通流预测模型 被引量:2
17
作者 兰添贺 曲大义 +1 位作者 陈昆 刘浩敏 《青岛理工大学学报》 CAS 2024年第1期134-140,共7页
为了提高短时交通流预测模型的准确度,提出一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化的支持向量机(Support Vector Machine,SVM)短时交通流预测模型(CS-SVM)。选取青岛市内的多组典型城市路段作为研究对象,将观测收集的车流量数据... 为了提高短时交通流预测模型的准确度,提出一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化的支持向量机(Support Vector Machine,SVM)短时交通流预测模型(CS-SVM)。选取青岛市内的多组典型城市路段作为研究对象,将观测收集的车流量数据作为学习样本。利用CS算法对SVM模型的主要参数进行优化,建立以SVM为基础的短时交通流预测模型。最后将CS-SVM模型与多种现有模型进行仿真分析。结果表明,CS-SVM模型相比其他传统模型具有更低的预测误差和更好的稳定性,CS-SVM模型相比SVM模型的MAE值下降了6.56%,RMSE值下降了7.36%。因此该模型能够为城市交通出行和交通流理论研究提供有效帮助。 展开更多
关键词 短时交通流预测 城市道路交通 布谷鸟搜索算法 支持向量机
在线阅读 下载PDF
基于Transformer的短时交通流时空预测 被引量:1
18
作者 杨国亮 习浩 +1 位作者 龚家仁 温钧林 《计算机应用与软件》 北大核心 2024年第3期169-173,225,共6页
现有的交通流预测模型未能全面获取路网的空间依赖,忽略了周期性对交通流量的影响,且缺乏对全局时间依赖的建模能力。针对以上问题,提出一种结合Transformer的动态扩散卷积门控循环单元预测模型。该模型利用动态扩散卷积网络和门控循环... 现有的交通流预测模型未能全面获取路网的空间依赖,忽略了周期性对交通流量的影响,且缺乏对全局时间依赖的建模能力。针对以上问题,提出一种结合Transformer的动态扩散卷积门控循环单元预测模型。该模型利用动态扩散卷积网络和门控循环单元对交通流的近期、日周期和周周期三个时间进行时空建模;使用Transformer层获取全局时间依赖关系;将各组件输出进行加权融合,生成预测结果。实验结果表明,该方法相较基准模型能有效降低预测误差,准确预测交通演化态势。 展开更多
关键词 短时交通流预测 扩散卷积 门控循环单元 TRANSFORMER
在线阅读 下载PDF
基于VMD-ISSA-LSTM的短时交通流预测研究
19
作者 庞学丽 宋坤 +2 位作者 姚红云 李一博 曹志富 《现代电子技术》 北大核心 2024年第8期31-36,共6页
针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合... 针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合,建立一种短时交通流预测模型(VMD-ISSA-LSTM)。首先利用VMD对历史原始交通流数据进行分解;然后采用佳点集、正弦函数扰动和Tent混沌映射等策略对标准的SSA算法加以改进,增强ISSA算法的寻优能力;最后,将每个分量送入ISSA-LSTM中进行预测,同时将预测结果线性叠加,得到交通流量预测值。以上海市中山北路-曹杨路口2018年11月1日—30日的历史交通数据对模型进行验证。结果表明,与LSTM、VMD-LSTM、VMD-SSA-LSTM等传统预测模型相比,VMD-ISSA-LSTM模型的预测结果的平均绝对百分比误差为1.278 4%,能够更好地应用于短时交通流预测中。 展开更多
关键词 短时交通流预测 变分模态分解 改进麻雀搜索算法 长短期记忆神经网络 佳点集 正弦函数扰动 Tent混沌映射
在线阅读 下载PDF
基于VMD-HSSA-BP神经网络模型的短时交通流预测 被引量:1
20
作者 孔思琴 《电子设计工程》 2024年第10期1-7,共7页
针对交通流数据的非平稳性和短时交通流预测高精度要求的问题,提出了一种由变分模态分解(VMD)、改进麻雀搜索算法(HSSA)和BP神经网络的组合预测模型。模型利用变分模态分解降低历史交通流数据的非平稳性,使用Hammersley和自适应控制因... 针对交通流数据的非平稳性和短时交通流预测高精度要求的问题,提出了一种由变分模态分解(VMD)、改进麻雀搜索算法(HSSA)和BP神经网络的组合预测模型。模型利用变分模态分解降低历史交通流数据的非平稳性,使用Hammersley和自适应控制因子分别改进麻雀搜索算法种群初始化和发现者位置更新公式,提高麻雀搜索算法的收敛速度和寻优能力,使用改进后的麻雀搜索算法寻找BP神经网络的最优权值和阈值,提升BP神经网络预测的精准度。通过仿真,将模型与现有模型进行对比,模型预测结果更好,验证了模型能克服交通流数据非平稳性,并具有较好的预测精度。 展开更多
关键词 短时交通流 BP神经网络 VMD分解 麻雀搜索算法
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部