For the first time an anti-shock packaging model of an acoustic-vibration sensor system has been designed by using the shocking isolation principle. The finite element analysis has been applied for design and simulati...For the first time an anti-shock packaging model of an acoustic-vibration sensor system has been designed by using the shocking isolation principle. The finite element analysis has been applied for design and simulation of the model. The effects of Young’s modulus of anti-shock rubber on naturally occurring frequencies of the combination of rubber and an acoustic sensor chip were analyzed. The displacement of the acoustic sensor chip is loaded with force. The results of static analysis and harmonic analysis show that while increasing Young’s modulus of anti-chock rubber, the first five natural frequencies of the package body also increases. Yet the displacement of the acoustic sensor chip around the resonant frequency decreases. The results of static and transient analysis show that the displacement of the acoustic sensor chip decreases with the increase of Young’s modulus of anti-chock rubber being loaded with either transient force or static force at the bottom of the combination of rubber and acoustic sensor chip.展开更多
Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical moni...Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical monitoring.However,conventional sensors with several inherent limitations,such as electromagnetic interference,signal loss in long-distance transmission,and low durability in harsh environments cannot fully meet current monitoring needs.Recently,fiber optic sensing technologies have been successfully applied in geotechnical monitoring due to the significant advantages of anti-electromagnetic interference,stable signal long-distance transmission,high durability,high sensitivity,and lightweight,which can be considered an ideal replacement for conventional sensors.In this paper,the working principle of different fiber optic sensing technologies,the development of fiber optic-based sensors,and the recent application status of these sensing technologies for geotechnical monitoring were comprehensively reviewed and discussed in detail.Finally,the challenges and countermeasures of the sensing technologies in geotechnical monitoring were also presented and discussed.展开更多
基金Sponsored by the Creativity Ability Fund Project for Cadreman of General Provincial University of Heilongjiang(Grant No.1053G033).
文摘For the first time an anti-shock packaging model of an acoustic-vibration sensor system has been designed by using the shocking isolation principle. The finite element analysis has been applied for design and simulation of the model. The effects of Young’s modulus of anti-shock rubber on naturally occurring frequencies of the combination of rubber and an acoustic sensor chip were analyzed. The displacement of the acoustic sensor chip is loaded with force. The results of static analysis and harmonic analysis show that while increasing Young’s modulus of anti-chock rubber, the first five natural frequencies of the package body also increases. Yet the displacement of the acoustic sensor chip around the resonant frequency decreases. The results of static and transient analysis show that the displacement of the acoustic sensor chip decreases with the increase of Young’s modulus of anti-chock rubber being loaded with either transient force or static force at the bottom of the combination of rubber and acoustic sensor chip.
基金funded by the National Natural Science Foundation of China(grant no.52122805,52078103,42225702).
文摘Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical monitoring.However,conventional sensors with several inherent limitations,such as electromagnetic interference,signal loss in long-distance transmission,and low durability in harsh environments cannot fully meet current monitoring needs.Recently,fiber optic sensing technologies have been successfully applied in geotechnical monitoring due to the significant advantages of anti-electromagnetic interference,stable signal long-distance transmission,high durability,high sensitivity,and lightweight,which can be considered an ideal replacement for conventional sensors.In this paper,the working principle of different fiber optic sensing technologies,the development of fiber optic-based sensors,and the recent application status of these sensing technologies for geotechnical monitoring were comprehensively reviewed and discussed in detail.Finally,the challenges and countermeasures of the sensing technologies in geotechnical monitoring were also presented and discussed.