The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive t...The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.展开更多
For the non-holonomic constraint robot,determining the pose of its end-effector will rely on its joints' displacement and the velocity of its non-holonomic constraint joints as well.Therefore,it becomes increasing...For the non-holonomic constraint robot,determining the pose of its end-effector will rely on its joints' displacement and the velocity of its non-holonomic constraint joints as well.Therefore,it becomes increasingly difficult to obtain the analytic solution of its self-motion manifold in the traditional way for solving matrix equation.In this paper,we take the pose of end manipulator as the result of the joint sequential motion based on the mentality of motion equivalence,the structure and the reference velocity which correspond precisely to the points in self-motion manifold as self-motion variable.Thus an analytical solution for the self-motion manifold of the 8 degree of freedom wheeled mobile manipulator is presented by taking vector algebra as a tool,which facilitates deriving the closed solution of its self-motion manifold.In the closing part of this paper,calculating examples of self-motion manifold and mechanism self-motion simulation are proposed,which proves the validity of solution algorithm for self-motion manifold.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped ...In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Image clustering has received significant attention due to the growing importance of image recognition.Researchers have explored Riemannian manifold clustering,which is capable of capturing the non-linear shapes found...Image clustering has received significant attention due to the growing importance of image recognition.Researchers have explored Riemannian manifold clustering,which is capable of capturing the non-linear shapes found in real-world datasets.However,the complexity of image data poses substantial challenges for modelling and feature extraction.Traditional methods such as covariance matrices and linear subspace have shown promise in image modelling,and they are still in their early stages and suffer from certain limitations.However,these include the uncertainty of representing data using only one Riemannian manifold,limited feature extraction capacity of single kernel functions,and resulting incomplete data representation and redundancy.To overcome these limitations,the authors propose a novel approach called join multiple Riemannian manifold representation and multi-kernel non-redundancy for image clustering(MRMNR-MKC).It combines covariance matrices with linear subspace to represent data and applies multiple kernel functions to map the non-linear structural data into a reproducing kernel Hilbert space,enabling linear model analysis for image clustering.Additionally,the authors use matrix-induced regularisation to improve the clustering kernel selection process by reducing redundancy and assigning lower weights to identical kernels.Finally,the authors also conducted numerous experiments to evaluate the performance of our approach,confirming its superiority to state-of-the-art methods on three benchmark datasets.展开更多
Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and ...Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.展开更多
由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标...由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。展开更多
Studies are made of the cohomology of CR_ submanifolds and integrability of the distribution D of CR_submanifolds. When dim D⊥】1, the totally umbilical non-trival CR-submanifold i n nea r Kaehler manifold is totall...Studies are made of the cohomology of CR_ submanifolds and integrability of the distribution D of CR_submanifolds. When dim D⊥】1, the totally umbilical non-trival CR-submanifold i n nea r Kaehler manifold is totally geodesic. In the end, we get:If is n ear Kaehler manifold with B】0, then is not permitt ed to have fixed foliate non-trival CR-submanifold.展开更多
基金supported by National Hi-tech Research and Develop- ment Program of China (863 Program, Grant No. 2005AA404291)
文摘The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.
文摘For the non-holonomic constraint robot,determining the pose of its end-effector will rely on its joints' displacement and the velocity of its non-holonomic constraint joints as well.Therefore,it becomes increasingly difficult to obtain the analytic solution of its self-motion manifold in the traditional way for solving matrix equation.In this paper,we take the pose of end manipulator as the result of the joint sequential motion based on the mentality of motion equivalence,the structure and the reference velocity which correspond precisely to the points in self-motion manifold as self-motion variable.Thus an analytical solution for the self-motion manifold of the 8 degree of freedom wheeled mobile manipulator is presented by taking vector algebra as a tool,which facilitates deriving the closed solution of its self-motion manifold.In the closing part of this paper,calculating examples of self-motion manifold and mechanism self-motion simulation are proposed,which proves the validity of solution algorithm for self-motion manifold.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
文摘In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金National Natural Science Foundation of China(62273290,62072391,and 61572419).
文摘Image clustering has received significant attention due to the growing importance of image recognition.Researchers have explored Riemannian manifold clustering,which is capable of capturing the non-linear shapes found in real-world datasets.However,the complexity of image data poses substantial challenges for modelling and feature extraction.Traditional methods such as covariance matrices and linear subspace have shown promise in image modelling,and they are still in their early stages and suffer from certain limitations.However,these include the uncertainty of representing data using only one Riemannian manifold,limited feature extraction capacity of single kernel functions,and resulting incomplete data representation and redundancy.To overcome these limitations,the authors propose a novel approach called join multiple Riemannian manifold representation and multi-kernel non-redundancy for image clustering(MRMNR-MKC).It combines covariance matrices with linear subspace to represent data and applies multiple kernel functions to map the non-linear structural data into a reproducing kernel Hilbert space,enabling linear model analysis for image clustering.Additionally,the authors use matrix-induced regularisation to improve the clustering kernel selection process by reducing redundancy and assigning lower weights to identical kernels.Finally,the authors also conducted numerous experiments to evaluate the performance of our approach,confirming its superiority to state-of-the-art methods on three benchmark datasets.
文摘Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.
文摘由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。
文摘Studies are made of the cohomology of CR_ submanifolds and integrability of the distribution D of CR_submanifolds. When dim D⊥】1, the totally umbilical non-trival CR-submanifold i n nea r Kaehler manifold is totally geodesic. In the end, we get:If is n ear Kaehler manifold with B】0, then is not permitt ed to have fixed foliate non-trival CR-submanifold.