Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requireme...Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.展开更多
The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for...The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.展开更多
The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 mi...The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 million hectares are cultivated. At present, 103 millionacre-feet river flow is diverted into irrigation canals. In addition, 42 million acre feet of thegroundwater are being pumped through 257697 tubewells to supplement the canal supplies.展开更多
The present research was conducted to monitor the wheat productivity along with residue incorporation under saline-sodic soils by examining different planting methods at Zaidi Farm, Kakar Gill, Sheikhupura District, P...The present research was conducted to monitor the wheat productivity along with residue incorporation under saline-sodic soils by examining different planting methods at Zaidi Farm, Kakar Gill, Sheikhupura District, Punjab Province in 2007-2008. Randomized Complete Block Design (RCBD) with three replications was used having treatments: control (broadcast), zero till wheat plantation, wheat plantation using happy seeder and wheat plantation on raised beds. It was observed that tillering was pretty higher (141 and 139 m2) under raised bed as well as happy seeder plantation as compared to zero tilled wheat and broadcast technique. A significant relation was detected among maximum straw and grain yield (4,898 and 1,752 kg-ha1) in raised bed followed by happy seeder planting method. The lowest grain yield was recorded in the broadcast method. Maximum net revenue earned by raised bed planting method (39,908 PKR) followed by happy seeder methodology (37,533 PKR). The overall study suggests that raised bed and happy seeder wheat plantation are the superior planting methods.展开更多
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and...Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.展开更多
Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By...Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By comparing soil organic carbon(SOC)contents change before and after biochar addition,we deciphered the driving factors or processes that control SOC change in response to biochar application.A limited increase in SOC was observed,about by 1.16%-12.80%,even when biochar was applied at the rate of 10%of bulk soil weight.Biochar application enhanced soil dissolved organic carbon(DOC)significantly by up to 67%.It was estimated that about 50%SOC was allocated to small macroaggregates(250-2000μm,CPOC),and SOC in silt and clay-sized particles(<53μm)decreased obviously after biochar addition.Microbial biomass increased with biochar amendment,of which actinomycetes(ACT),fungus(FUN),protozoon(PRO),and bacteria with straight-chain saturated fatty acids(OB)increased remarkably.Multiple linear regression models implied that DOC was governed by ACT and soil N∶P ratio,while SOC mostly depended on CPOC.The principal component analysis and the partial least square path model(PLS-PM)indicated that biochar addition aggravated nitrogen limitation in saline-sodic soils,and effects of microorganisms on regulating SOC greatly depended on nitrogen bioavailability.Biochar application had vastly changed interactions between environmental factors and SOC in saline-sodic soils.Effects of nutrients on SOC shifted to great inhibition from strong stimulation after biochar addition,meanwhile,aggregation was the only factor presenting positive effects on SOC.How to eliminate nutrient limitation and better soil aggregation process should be considered in priority when biochar was used to improve SOC in saline-sodic soils.展开更多
This study focused on the Arbuscular mycorrhizal(AM)fungal diversity in the saline-sodic soils based on native spore density and most probable number(MPN)assay.Identification through spore morphology showed existence ...This study focused on the Arbuscular mycorrhizal(AM)fungal diversity in the saline-sodic soils based on native spore density and most probable number(MPN)assay.Identification through spore morphology showed existence of five genera in the various crop rhizospheres.The physico-chemical analysis of the native soils revealed that they were saline-sodic with pH ranging from(8.7±0.5)to(9.5±0.6)and habituated five different genera of AM fungi including Glomus,Scutellospora,Acaulospora,Sclerocystis and Gigaspora.Each location revealed presence of varied species of AM fungus namely Acaulospora and Glomus in rhizosphere of maize;Scutellospora and Glomus in tulsi;four isolates of Glomus in onion;Glomus and Sclerocystis in guava;three isolates of Glomus in rice;Glomus in neem and Gigaspora and Glomus in bamboo.The molecular identification through nested PCR analysis showed amplification of 600 bp size in SSU rDNA gene in samples A and C(predominated by Acaulospora and Glomus mosseae respectively).展开更多
Poor soil physical properties, serious salinization and low soil nutrients are the limiting factors for crop yield in saline-sodic soil. Long-term cattle manure application is an important measure that can affect the ...Poor soil physical properties, serious salinization and low soil nutrients are the limiting factors for crop yield in saline-sodic soil. Long-term cattle manure application is an important measure that can affect the physicochemical properties and increase the maize yield of saline-sodic soil. This experiment included five treatments according to the history of cattle manure application: a control treatment with no cattle manure (CK) and treatments with cattle manure application for 14 years (14 a), 17 years (17 a), 20 years (20 a), and 25 years (25 a). The results indicated that compared with the CK treatment, long-term cattle manure application to saline-sodic soil resulted in significant increases in soil organic matter (SOM), soil total nitrogen (TN) and available nutrients at the 0-20 cm and 20-40 cm depths (p<0.05). The soil physical properties improved significantly, and cattle manure application significantly decreased the soil bulk density (ρb) and soil density (ρd) and increased the soil total porosity (ft) and water-holding capacity (WHC). With the number of years of cattle manure application, the soil pH, electrical conductivity (EC), exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR1:5) decreased significantly, and the maize yield gradually increased over time from 8690 kg/hm2 in the CK treatment to 14 690 kg/hm2 in the 25a treatment. There were significant differences among all treatments (p<0.05). The results showed that long-term cattle manure application decreased the soil ρb and saline-alkaline properties, which was the main factor that affected the maize yield in the saline-sodic soil, especially for soil ρb.展开更多
Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and...Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and sodium adsorption ratio(SAR) in saline-sodic soil under the infiltration of saline ice meltwater.Soils were treated using saline water of three irrigation volumes(1 600, 2 400 and 3 200 mL) at four salinity levels.These four salinity levels included salt free(0 g L^(-1)), low salinity level(1.4 g L^(-1)), moderate salinity level(2.7 g L^(-1)) and high salinity level(4.1 g L^(-1)).The prepared saline water was frozen into ice, and then the ice was put on the surface of soil columns.After 96 h, the infiltration rate and soil moisture content of saline ice treatments were greater than those of salt-free ice treatments, increasing with the increase of ice salinity.Infiltration of saline ice meltwater increased soil moisture content in the upper layers for all treatments.Both salt contents and SAR values in the upper soil layers decreased in all saline ice treatments and were lower than those in salt-free ice treatment.However, this trend was reversed in the deeper(below 20 cm) soil layers.The highest desalting rate and lowest SAR were observed in high-salinity treatment under three irrigation volumes in the 0–15 cm soil layer,especially under irrigation volume of 2 400 mL.These results indicate that saline ice(0–20 cm) meltwater irrigation is beneficial to saline-sodic soil reclamation, and the best improvement effect would be achieved when using high-salinity ice under optimal irrigation volume.展开更多
Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movement...Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.展开更多
Soil integrity and fertility is on high risk due to water erosion, it’s not only disturbed cropping practices but also damages the ecosystem of the land. In this study, the combination of GIS and RUSLE modeling are u...Soil integrity and fertility is on high risk due to water erosion, it’s not only disturbed cropping practices but also damages the ecosystem of the land. In this study, the combination of GIS and RUSLE modeling are used to compute average yearly soil erosion rate in Baltistan Division of Gilgit. R, K, LS C & P Factors were computed to determine average Annual Soil Loss (ASL) which came out to be 6.68 tons/hectare/year. Higher altitudes, which are primarily covered in glaciers and watersheds, depicts maximum value of ASL when compared with lower altitude. Study area may witness a rise in soil loss due to soil texture and change in rain pattern (due to climate change). The maps developed during the study can also be referred to develop planning of land management strategy against soil erosion.展开更多
A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand co...A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand could be used as an ingredient or an amendment for Turba. Sand was added at rates of 0%, 5%, 10%, 25, 50% and 75% (w/w) in two different ways 1) by incorporating it into the Turba during its manufacture (IN) or 2) by mixing it with Turba aggregates after their manufacture (OUT). Incorporation of sand into Turba aggregates (IN) decreased the percentage of sample present as large aggregates (2 - 4 mm dia.) after crushing and sieving (<4 mm) and also reduced the stability of 2 - 4 mm dia. formed aggregates (to dry/wet sieving) and are therefore not recommended. In a 16-week greenhouse study, ryegrass shoot yields were greater in Turba than in sand [and decreased with increasing sand additions (OUT)] while root dry matter showed the opposite trend. The greater grass growth in Turba than sand was attributed to incipit water stress in plants grown in sand and this may have promoted greater allocation of assimilates to roots resulting in a greater root-to-top mass ratio. The much lower macroporosity in Turba coupled with the solid cemented nature of Turba aggregates resulted in production of thinner roots and therefore greater root length than in sand. Turba (manufactured from bauxite residue and compost added at 10% w/w) is a suitable medium for plant growth and there is no advantage in incorporating sand into, or with, the Turba aggregates.展开更多
As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, th...As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, the organic carbon stock in forest soils is of great significance for climate change and the health of forest ecosystems. This paper provides a comprehensive review of forest soil organic carbon, discussing its research progress, role, influencing factors, and future trends, with the aim of providing scientific evidence for forest soil carbon management to mitigate global climate change and promote the sustainable development of forest ecosystems.展开更多
Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain...Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e−09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers.展开更多
Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evalua...Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evaluate: (1) the allelopathic activity of five invasive weed species (Ageratum conyzoides, Bidens pilosa, Cecropia peltata, Tithonia diversifolia, and Chromolaena odorata) on Lactuca sativa and Phaseolus vulgaris growth;and (2) the effects of A. conyzoides rhizospheric soil on P. vulgaris seed germination. Bioassays of aqueous and leachate extracts were prepared from fresh leaves of the invasive species at concentrations of 0%, 25%, 50%, 75%, and 100% to assess allelopathic effects on L. sativa and P. vulgaris seed germination. Additionally, rhizospheric soil from A. conyzoides stands was collected, processed, and applied at varied weights (0.5 - 7 kg) to P. vulgaris seeds, with germination observed over nine days. Polynomial regression analysis was applied to model the data. High-concentration extracts (75% and 100%) significantly inhibited germination, root, and shoot growth in both L. sativa and P. vulgaris (P 2 − 80.294922x3 + 41.541115x4 − 11.747532x5 + 1.8501702x6 − 0.1519795x7 + 0.0050631x8. Allelopathic effects were concentration-dependent, with roots more sensitive than shoots to the invasive extracts. L. sativa was the most susceptible, while P. vulgaris showed greater tolerance. Modelling the allelopathic impact of A. conyzoides rhizospheric soil offers valuable insight into the allelochemical dosage necessary to affect seed germination, informing potential agricultural management strategies for invasive plant control.展开更多
Lateritic soils are found over large areas in tropical countries where their suitability for road engineering is a real concern, both compositionally and mechanically. Mineralogical and geochemical characterization, a...Lateritic soils are found over large areas in tropical countries where their suitability for road engineering is a real concern, both compositionally and mechanically. Mineralogical and geochemical characterization, and profile description were carried out on Pliocene gravel lateritic soils from the Thies region to assess their suitability for road construction. These soils were sampled in Lam-Lam, Mont Rolland, Pout, Ngoundiane and Sindia borrow pits in that region. Minerals that make up these studied materials are quartz, kaolinite, hematite and goethite, identified by X-Ray Diffraction and confirmed with Infrared spectroscopy. This mineralogy is characteristic of lateritic soils which are concretionary structure and are formed in well-drained tropical regions like that of Thies. According to the chemical results, these gravel lateritic soils are poor in organic matter, OM 2/(Al2O3 + Fe2O3) Diop ternary diagram for classifying lateritic soils. Therefore, Thies materials are ferruginous lateritic soils, Al2O3/Fe2O3 < 1, containing non-swelling clay (kaolinite) and rich in gravelly nodules, S/CEC < 50wt%. As a result, these soils are compositionally suitable for road construction. These appreciated mineralogical, geochemical and pedological properties can now help overcome compositional challenges well before determining the bearing capacity of lateritic materials. This mechanical strength, which largely depends on their composition, is decisive in defining the optimal conditions for using lateritic materials in road geotechnics.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples w...This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.展开更多
Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
文摘Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.
文摘The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.
文摘The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 million hectares are cultivated. At present, 103 millionacre-feet river flow is diverted into irrigation canals. In addition, 42 million acre feet of thegroundwater are being pumped through 257697 tubewells to supplement the canal supplies.
文摘The present research was conducted to monitor the wheat productivity along with residue incorporation under saline-sodic soils by examining different planting methods at Zaidi Farm, Kakar Gill, Sheikhupura District, Punjab Province in 2007-2008. Randomized Complete Block Design (RCBD) with three replications was used having treatments: control (broadcast), zero till wheat plantation, wheat plantation using happy seeder and wheat plantation on raised beds. It was observed that tillering was pretty higher (141 and 139 m2) under raised bed as well as happy seeder plantation as compared to zero tilled wheat and broadcast technique. A significant relation was detected among maximum straw and grain yield (4,898 and 1,752 kg-ha1) in raised bed followed by happy seeder planting method. The lowest grain yield was recorded in the broadcast method. Maximum net revenue earned by raised bed planting method (39,908 PKR) followed by happy seeder methodology (37,533 PKR). The overall study suggests that raised bed and happy seeder wheat plantation are the superior planting methods.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFD1500501)National Natural Science Foundation of China(No.41971066)+1 种基金Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)High Tech Fund Project of S&T Cooperation Between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.
基金Under the auspices of the National Key Research and Development Program of China(No.2016YFC0500404-5)。
文摘Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By comparing soil organic carbon(SOC)contents change before and after biochar addition,we deciphered the driving factors or processes that control SOC change in response to biochar application.A limited increase in SOC was observed,about by 1.16%-12.80%,even when biochar was applied at the rate of 10%of bulk soil weight.Biochar application enhanced soil dissolved organic carbon(DOC)significantly by up to 67%.It was estimated that about 50%SOC was allocated to small macroaggregates(250-2000μm,CPOC),and SOC in silt and clay-sized particles(<53μm)decreased obviously after biochar addition.Microbial biomass increased with biochar amendment,of which actinomycetes(ACT),fungus(FUN),protozoon(PRO),and bacteria with straight-chain saturated fatty acids(OB)increased remarkably.Multiple linear regression models implied that DOC was governed by ACT and soil N∶P ratio,while SOC mostly depended on CPOC.The principal component analysis and the partial least square path model(PLS-PM)indicated that biochar addition aggravated nitrogen limitation in saline-sodic soils,and effects of microorganisms on regulating SOC greatly depended on nitrogen bioavailability.Biochar application had vastly changed interactions between environmental factors and SOC in saline-sodic soils.Effects of nutrients on SOC shifted to great inhibition from strong stimulation after biochar addition,meanwhile,aggregation was the only factor presenting positive effects on SOC.How to eliminate nutrient limitation and better soil aggregation process should be considered in priority when biochar was used to improve SOC in saline-sodic soils.
文摘This study focused on the Arbuscular mycorrhizal(AM)fungal diversity in the saline-sodic soils based on native spore density and most probable number(MPN)assay.Identification through spore morphology showed existence of five genera in the various crop rhizospheres.The physico-chemical analysis of the native soils revealed that they were saline-sodic with pH ranging from(8.7±0.5)to(9.5±0.6)and habituated five different genera of AM fungi including Glomus,Scutellospora,Acaulospora,Sclerocystis and Gigaspora.Each location revealed presence of varied species of AM fungus namely Acaulospora and Glomus in rhizosphere of maize;Scutellospora and Glomus in tulsi;four isolates of Glomus in onion;Glomus and Sclerocystis in guava;three isolates of Glomus in rice;Glomus in neem and Gigaspora and Glomus in bamboo.The molecular identification through nested PCR analysis showed amplification of 600 bp size in SSU rDNA gene in samples A and C(predominated by Acaulospora and Glomus mosseae respectively).
基金supported by the National Natural Science Foundation of China (Grant No.42177320).
文摘Poor soil physical properties, serious salinization and low soil nutrients are the limiting factors for crop yield in saline-sodic soil. Long-term cattle manure application is an important measure that can affect the physicochemical properties and increase the maize yield of saline-sodic soil. This experiment included five treatments according to the history of cattle manure application: a control treatment with no cattle manure (CK) and treatments with cattle manure application for 14 years (14 a), 17 years (17 a), 20 years (20 a), and 25 years (25 a). The results indicated that compared with the CK treatment, long-term cattle manure application to saline-sodic soil resulted in significant increases in soil organic matter (SOM), soil total nitrogen (TN) and available nutrients at the 0-20 cm and 20-40 cm depths (p<0.05). The soil physical properties improved significantly, and cattle manure application significantly decreased the soil bulk density (ρb) and soil density (ρd) and increased the soil total porosity (ft) and water-holding capacity (WHC). With the number of years of cattle manure application, the soil pH, electrical conductivity (EC), exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR1:5) decreased significantly, and the maize yield gradually increased over time from 8690 kg/hm2 in the CK treatment to 14 690 kg/hm2 in the 25a treatment. There were significant differences among all treatments (p<0.05). The results showed that long-term cattle manure application decreased the soil ρb and saline-alkaline properties, which was the main factor that affected the maize yield in the saline-sodic soil, especially for soil ρb.
基金supported by the National Key Research and Development Program of China(No.2016YFC0501200)the National Natural Science Foundation of China(Nos.41571210 and 41601583)the Natural Science and Technology Basic Work of China(No.2015FY110500)
文摘Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and sodium adsorption ratio(SAR) in saline-sodic soil under the infiltration of saline ice meltwater.Soils were treated using saline water of three irrigation volumes(1 600, 2 400 and 3 200 mL) at four salinity levels.These four salinity levels included salt free(0 g L^(-1)), low salinity level(1.4 g L^(-1)), moderate salinity level(2.7 g L^(-1)) and high salinity level(4.1 g L^(-1)).The prepared saline water was frozen into ice, and then the ice was put on the surface of soil columns.After 96 h, the infiltration rate and soil moisture content of saline ice treatments were greater than those of salt-free ice treatments, increasing with the increase of ice salinity.Infiltration of saline ice meltwater increased soil moisture content in the upper layers for all treatments.Both salt contents and SAR values in the upper soil layers decreased in all saline ice treatments and were lower than those in salt-free ice treatment.However, this trend was reversed in the deeper(below 20 cm) soil layers.The highest desalting rate and lowest SAR were observed in high-salinity treatment under three irrigation volumes in the 0–15 cm soil layer,especially under irrigation volume of 2 400 mL.These results indicate that saline ice(0–20 cm) meltwater irrigation is beneficial to saline-sodic soil reclamation, and the best improvement effect would be achieved when using high-salinity ice under optimal irrigation volume.
文摘Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.
文摘Soil integrity and fertility is on high risk due to water erosion, it’s not only disturbed cropping practices but also damages the ecosystem of the land. In this study, the combination of GIS and RUSLE modeling are used to compute average yearly soil erosion rate in Baltistan Division of Gilgit. R, K, LS C & P Factors were computed to determine average Annual Soil Loss (ASL) which came out to be 6.68 tons/hectare/year. Higher altitudes, which are primarily covered in glaciers and watersheds, depicts maximum value of ASL when compared with lower altitude. Study area may witness a rise in soil loss due to soil texture and change in rain pattern (due to climate change). The maps developed during the study can also be referred to develop planning of land management strategy against soil erosion.
文摘A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand could be used as an ingredient or an amendment for Turba. Sand was added at rates of 0%, 5%, 10%, 25, 50% and 75% (w/w) in two different ways 1) by incorporating it into the Turba during its manufacture (IN) or 2) by mixing it with Turba aggregates after their manufacture (OUT). Incorporation of sand into Turba aggregates (IN) decreased the percentage of sample present as large aggregates (2 - 4 mm dia.) after crushing and sieving (<4 mm) and also reduced the stability of 2 - 4 mm dia. formed aggregates (to dry/wet sieving) and are therefore not recommended. In a 16-week greenhouse study, ryegrass shoot yields were greater in Turba than in sand [and decreased with increasing sand additions (OUT)] while root dry matter showed the opposite trend. The greater grass growth in Turba than sand was attributed to incipit water stress in plants grown in sand and this may have promoted greater allocation of assimilates to roots resulting in a greater root-to-top mass ratio. The much lower macroporosity in Turba coupled with the solid cemented nature of Turba aggregates resulted in production of thinner roots and therefore greater root length than in sand. Turba (manufactured from bauxite residue and compost added at 10% w/w) is a suitable medium for plant growth and there is no advantage in incorporating sand into, or with, the Turba aggregates.
文摘As an important component of the global carbon cycle, forest soil organic carbon has a crucial impact on the stability of ecosystems and climate change. As one of the largest carbon pools in terrestrial ecosystems, the organic carbon stock in forest soils is of great significance for climate change and the health of forest ecosystems. This paper provides a comprehensive review of forest soil organic carbon, discussing its research progress, role, influencing factors, and future trends, with the aim of providing scientific evidence for forest soil carbon management to mitigate global climate change and promote the sustainable development of forest ecosystems.
文摘Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e−09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers.
文摘Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evaluate: (1) the allelopathic activity of five invasive weed species (Ageratum conyzoides, Bidens pilosa, Cecropia peltata, Tithonia diversifolia, and Chromolaena odorata) on Lactuca sativa and Phaseolus vulgaris growth;and (2) the effects of A. conyzoides rhizospheric soil on P. vulgaris seed germination. Bioassays of aqueous and leachate extracts were prepared from fresh leaves of the invasive species at concentrations of 0%, 25%, 50%, 75%, and 100% to assess allelopathic effects on L. sativa and P. vulgaris seed germination. Additionally, rhizospheric soil from A. conyzoides stands was collected, processed, and applied at varied weights (0.5 - 7 kg) to P. vulgaris seeds, with germination observed over nine days. Polynomial regression analysis was applied to model the data. High-concentration extracts (75% and 100%) significantly inhibited germination, root, and shoot growth in both L. sativa and P. vulgaris (P 2 − 80.294922x3 + 41.541115x4 − 11.747532x5 + 1.8501702x6 − 0.1519795x7 + 0.0050631x8. Allelopathic effects were concentration-dependent, with roots more sensitive than shoots to the invasive extracts. L. sativa was the most susceptible, while P. vulgaris showed greater tolerance. Modelling the allelopathic impact of A. conyzoides rhizospheric soil offers valuable insight into the allelochemical dosage necessary to affect seed germination, informing potential agricultural management strategies for invasive plant control.
文摘Lateritic soils are found over large areas in tropical countries where their suitability for road engineering is a real concern, both compositionally and mechanically. Mineralogical and geochemical characterization, and profile description were carried out on Pliocene gravel lateritic soils from the Thies region to assess their suitability for road construction. These soils were sampled in Lam-Lam, Mont Rolland, Pout, Ngoundiane and Sindia borrow pits in that region. Minerals that make up these studied materials are quartz, kaolinite, hematite and goethite, identified by X-Ray Diffraction and confirmed with Infrared spectroscopy. This mineralogy is characteristic of lateritic soils which are concretionary structure and are formed in well-drained tropical regions like that of Thies. According to the chemical results, these gravel lateritic soils are poor in organic matter, OM 2/(Al2O3 + Fe2O3) Diop ternary diagram for classifying lateritic soils. Therefore, Thies materials are ferruginous lateritic soils, Al2O3/Fe2O3 < 1, containing non-swelling clay (kaolinite) and rich in gravelly nodules, S/CEC < 50wt%. As a result, these soils are compositionally suitable for road construction. These appreciated mineralogical, geochemical and pedological properties can now help overcome compositional challenges well before determining the bearing capacity of lateritic materials. This mechanical strength, which largely depends on their composition, is decisive in defining the optimal conditions for using lateritic materials in road geotechnics.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
文摘This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.