期刊文献+
共找到667篇文章
< 1 2 34 >
每页显示 20 50 100
THE ASYMPTOTIC BEHAVIOR AND OSCILLATION FOR A CLASS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
1
作者 黄先勇 邓勋环 王其如 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期925-946,共22页
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe... In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results. 展开更多
关键词 nonlinear delay dynamic equations NONOsCILLATION asymptotic behavior Philostype oscillation criteria generalized Riccati transformation
在线阅读 下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
2
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The nonlinear Differential Equation with Time-Dependent Coefficients The Bifurcation-Integration solution Nonequilibrium Irreversible states Thermomechanical dynamics (TMD)
在线阅读 下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
3
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 Differential equations Numerical Analysis Mathematical Computing Engineering Models nonlinear dynamics
在线阅读 下载PDF
Norm-based zeroing neural dynamics for time-variant non-linear equations
4
作者 Linyan Dai Hanyi Xu +1 位作者 Yinyan Zhang Bolin Liao 《CAAI Transactions on Intelligence Technology》 2024年第6期1561-1571,共11页
Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergen... Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE. 展开更多
关键词 finite-time convergence norm-based zeroing neural dynamics ROBUsTNEss time-variant nonlinear equation zeroing neural dynamic
在线阅读 下载PDF
Oscillation Criteria for Third-order NonlinearNeutral Dynamic Equations on Time Scales 被引量:3
5
《工程数学学报》 CSCD 北大核心 2016年第2期206-220,共15页
Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is imp... Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results. 展开更多
关键词 THIRD-ORDER nonlinear dynamic equation NEUTRAL OsCILLATION CRITERION AsYMPTOTICBEHAVIOR generalized RICCATI transformation time scale
在线阅读 下载PDF
SOME OSCILLATION CRITERIA FOR A CLASS OF HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS WITH A DELAY ARGUMENT ON TIME SCALES 被引量:1
6
作者 Xin WU 《Acta Mathematica Scientia》 SCIE CSCD 2021年第5期1474-1492,共19页
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w... In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results. 展开更多
关键词 OsCILLATION nonlinear dynamic equations higher order equation delay dynamic equations time scale
在线阅读 下载PDF
Global Dynamic Characteristic of Nonlinear Torsional Vibration System under Harmonically Excitation 被引量:16
7
作者 SHI Peiming LIU Bin HOU Dongxiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期132-139,共8页
Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonl... Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonlinear friction force is investigated. On the basis of the generalized dissipation Lagrange's equation, the dynamics equation of nonlinear torsional vibration system is deduced. The bifurcation and chaotic motion in the system subjected to an external harmonic excitation is studied by theoretical analysis and numerical simulation. The stability of unperturbed system is analyzed by using the stability theory of equilibrium positions of Hamiltonian systems. The criterion of existence of chaos phenomena under a periodic perturbation is given by means of Melnikov's method. It is shown that the existence of homoclinic and heteroclinic orbits in the unperturbed system implies chaos arising from breaking of homoclinic or heteroclinic orbits under perturbation. The validity of the result is checked numerically. Periodic doubling bifurcation route to chaos, quasi-periodic route to chaos, intermittency route to chaos are found to occur due to the amplitude varying in some range. The evolution of system dynamic responses is demonstrated in detail by Poincare maps and bifurcation diagrams when the system undergoes a sequence of periodic doubling or quasi-periodic bifurcations to chaos. The conclusion can provide reference for deeply researching the dynamic behavior of mechanical drive systems. 展开更多
关键词 nonlinear torsional vibration dynamics behavior BIFURCATION CHAOs Melnikov's method
在线阅读 下载PDF
Oscillation of Second-order Nonlinear Dynamic Equation on Time Scales 被引量:7
8
作者 YANG Jia-shan 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第2期172-179,共8页
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech... : The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article. 展开更多
关键词 time scales dynamic equations nonlinear neutral term damping term variable delay Riccati transformation OsCILLATION
在线阅读 下载PDF
ANALYSIS OF NONLINEAR DYNAMIC RESPONSE FOR VISCOELASTIC COMPOSITE PLATE WITH TRANSVERSE MATRIX CRACKS 被引量:6
9
作者 FuYiming LiPing'en ZhengYufang 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第3期230-238,共9页
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ... Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data. 展开更多
关键词 viscoelastic composite plate transverse matrix cracks damage evolution equation nonlinear dynamic response
在线阅读 下载PDF
THE DYNAMICAL BEHAVIOR OF FULLY DISCRETE SPECTRAL METHOD FOR NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED 被引量:3
10
作者 向新民 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期165-176,共12页
Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the ... Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to 展开更多
关键词 nonlinear sCHRODINGER equation INFINITE dimensional dynamic system dynamical behavior fully discrete spectral method large TIME convergence difference scheme vrich TIME differ-
在线阅读 下载PDF
Exact Solutions for a Higher-Order Nonlinear Schrodinger Equation in Atmospheric Dynamics 被引量:3
11
作者 HUANG Fei TANG Xiao-Yan LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期573-576,共4页
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ... By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena. 展开更多
关键词 higher-order nonlinear schrodinger equation atmospheric dynamics bright solitary wave dark solitary wave
在线阅读 下载PDF
A Family of Fifth-order Iterative Methods for Solving Nonlinear Equations 被引量:4
12
作者 Liu Tian-Bao Cai Hua Li Yong 《Communications in Mathematical Research》 CSCD 2013年第3期255-260,共6页
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order... In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects. 展开更多
关键词 Newton's method iterative method nonlinear equation order of convergence
在线阅读 下载PDF
Generalized Extended tanh-function Method for Traveling Wave Solutions of Nonlinear Physical Equations 被引量:6
13
作者 CHANG JING GAO YI-XIAN AND CAI HUA 《Communications in Mathematical Research》 CSCD 2014年第1期60-70,共11页
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equat... In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics. 展开更多
关键词 generalized tanh-function method nonlinear schrodinger equation Fisher's equation
在线阅读 下载PDF
Numerical Solution of Constrained Mechanical System Motions Equations and Inverse Problems of Dynamics 被引量:2
14
作者 R.G. Muharliamov (Russian Peoples’ Friendship University, 117198, Moscow, Mikluho Maklaya,6,Russia.) 《应用数学》 CSCD 北大核心 2001年第2期103-119,共17页
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant... In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined. 展开更多
关键词 Kinematies dynamical equations CONsTRAINTs Lagrange’s equations Rigid body Numerical solution Differential algebraic equations
在线阅读 下载PDF
Synchronization Phenomena Investigation of a New Nonlinear Dynamical System 4D by Gardano’s and Lyapunov’s Methods 被引量:2
15
作者 Abdulsattar Abdullah Hamad Ahmed S.Al-Obeidi +2 位作者 Enas H.Al-Taiy Osamah Ibrahim Khalaf Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3311-3327,共17页
Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The fin... Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardanomethod.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive systemSYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them,an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization,by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained. 展开更多
关键词 CHAOs Lu model ANTI-sYNCHRONIZATION hybrid synchronization Gardano’s method nonlinear dynamical system
在线阅读 下载PDF
A direct probabilistic approach to solve state equations for nonlinear systems under random excitation 被引量:1
16
作者 Zheng Lv Zhiping Qiu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期941-958,共18页
In this paper, a direct probabilistic approach(DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random p... In this paper, a direct probabilistic approach(DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random process.The proposed method has the advantage of obtaining the response's moments directly from the initial conditions and statistical characteristics of the corresponding external excitations. First, the response's moment equations are directly derived based on a DPA, which is completely independent of the It?/filtering approach since no specific assumptions regarding the correlation structure of excitation are made.By solving them under Gaussian closure, the response's moments can be obtained. Subsequently, a multiscale algorithm for the numerical solution of moment equations is exploited to improve computational efficiency and avoid much wall-clock time. Finally, a comparison of the results with Monte Carlo(MC) simulation gives good agreement.Furthermore, the advantage of the multiscale algorithm in terms of efficiency is also demonstrated by an engineering example. 展开更多
关键词 Direct probabilistic approach nonlinear dynamic system Nonstationary random process Response’s moments Multiscale algorithm
在线阅读 下载PDF
Existence of Positive Solutions of Three-point Boundary Value Problem for Higher Order Nonlinear Fractional Differential Equations 被引量:2
17
作者 韩仁基 葛建生 蒋威 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第4期516-525,共10页
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-... In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result. 展开更多
关键词 nonlinear fractional differential equation three-point boundary value problem positive solutions green’s function banach contraction mapping fixed point theorem in cones
在线阅读 下载PDF
Oscillation of Third-order Delay Dynamic Equations on Time Scales 被引量:6
18
作者 YANG Jia-shan 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第3期447-456,共10页
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal... This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results. 展开更多
关键词 OsCILLATION time scales delay dynamic equations l^iccati transformation non-linear neutral term
在线阅读 下载PDF
Hamilton-Souplet-Zhang's gradient estimates for two weighted nonlinear parabolic equations 被引量:1
19
作者 MA Bing-qing HUANG Guang-yue 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第3期353-364,共12页
In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded be... In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f. 展开更多
关键词 Hamilton’s gradient estimate souplet-Zhang’s gradient estimate weighted nonlinear parabolic equation Bakry-Émery Ricci tensor
在线阅读 下载PDF
Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method 被引量:1
20
作者 Tianmin Han Yuhuan Han 《Applied Mathematics》 2010年第3期222-229,共8页
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv... In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper. 展开更多
关键词 nonlinear equations Ordinary Differential equations Numerical Integration Fixed Point ITERATION Newton’s Method sTIFF ILL-CONDITIONED
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部