Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the...Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
目的:观察化瘀通络灸对血管性痴呆大鼠Ras同源物基因组成员A(Ras homolog gene family member A,RhoA)/Rho激酶(Rho associated protein kinase, ROCK)轴突生长抑制性信号通路相关蛋白的影响,探讨其治疗血管性痴呆的机制。方法:使用Mor...目的:观察化瘀通络灸对血管性痴呆大鼠Ras同源物基因组成员A(Ras homolog gene family member A,RhoA)/Rho激酶(Rho associated protein kinase, ROCK)轴突生长抑制性信号通路相关蛋白的影响,探讨其治疗血管性痴呆的机制。方法:使用Morris水迷宫筛除贴壁、原地旋转或溺水的Wistar大鼠,将符合条件大鼠分为假手术组、造模组。假手术组暴露大鼠颈总动脉;造模组用改良的双侧颈总动脉永久结扎术制备血管性痴呆大鼠模型,术后3 d用水迷宫对大鼠进行模型鉴定,将合格者随机分为模型组、艾灸组和西药组。于鉴定次日对大鼠进行治疗,艾灸组悬灸百会、大椎、神庭,20 min/次,1次/d, 1周为1疗程,2个疗程间休息1 d,共3个疗程;西药组用吡拉西坦溶液灌胃,2次/d;假手术组、模型组行灸架固定。治疗结束,取大鼠脑组织,用免疫荧光单染法、蛋白免疫印迹法检测其脑内目的蛋白RhoA、Rho相关螺旋卷曲蛋白激酶Ⅱ(Rho protein-related curl spiral kinase-Ⅱ,ROCKⅡ)、肌球蛋白轻链磷酸化(Phosphorylation of myosin light chain, P-MLC)的阳性表达。结果:模型组大鼠海马、皮质RhoA、ROCKⅡ、P-MLC蛋白表达高于假手术组(P<0.01);艾灸组、西药组海马和皮质RhoA、ROCKⅡ、P-MLC蛋白表达较模型组低(P<0.05);艾灸组皮质ROCKⅡ蛋白表达较西药组稍低(P<0.05);艾灸组与西药组海马ROCKⅡ、海马与皮质RhoA、P-MLC蛋白表达差异无统计学意义(P>0.05)。结论:化瘀通络灸可能是通过下调RhoA/ROCK轴突生长抑制性信号通路相关蛋白的表达提高血管性痴呆大鼠的记忆力,从而发挥治疗血管性痴呆的作用。展开更多
The nature of rock fragmentation affects the downstream mining processes like loading, hauling, and crushing the blasted rock. Therefore, it is important to evaluate rock fragmentation after blasting for choosing or d...The nature of rock fragmentation affects the downstream mining processes like loading, hauling, and crushing the blasted rock. Therefore, it is important to evaluate rock fragmentation after blasting for choosing or designing optimal strategies for these processes. However, current techniques of rock fragmentation analysis such as sieving, image-based analysis, empirical methods or artificial intelligence-based methods entail different practical challenges, for example, excessive processing time, higher costs, applicability issues in underground environments, user-biasness, accuracy issues, etc. A classification model has been developed by utilizing image analysis techniques to overcome these challenges. The model was tested on about 7500 videos of load-haul-dump (LHD) buckets with blasted material from Malmberget iron ore mine in Sweden. A Kernel-based support vector machine (SVM) method was utilized to extract frames comprising loaded LHD buckets. Then, the blasted rock in the buckets was classified into five distinct categories using the bagging k-nearest neighbor (KNN) technique. The results showed 99.8% and 89.8% accuracy for kernel-based SVM and bagging KNN classifiers, respectively. The developed framework is efficient in terms of the operation time, cost and practicability for different mines and variate amounts of rock masses.展开更多
The stratum lithology and geological structure of the highway tunnel in the mountainous areas of western China are complex,and the engineering geological conditions are complicated.When the highway tunnel passes throu...The stratum lithology and geological structure of the highway tunnel in the mountainous areas of western China are complex,and the engineering geological conditions are complicated.When the highway tunnel passes through different lithological strata,its structural design and construction technology are completely diff erent.Therefore,in order to support the tunnel design and construction,the tunnel survey Among them,the identifi cation of the contact boundary between magmatic rock and metamorphic rock and the grade of surrounding rock is very important.Through magnetotelluric survey of the Mupi tunnel of Jiuzhaigou-Mianyang highway on G8513 line,2D forward numerical simulation,1D,2D,3D inversion,and engineering geological analysis,it is revealed that the electrical characteristics of each layer,focusing on the identifi cation of the contact boundary between magmatic rock and metamorphic rock.This study provides the electrical characteristics of the magmatic rock and metamorphic rock contact boundary of the Mupi Tunnel.It is speculated that the boundary is revealed by the tunnel construction excavation,which verifies the correctness of the geophysical inversion model and provides a more detailed design basis for the tunnel design.I believe that taking the Mupi Tunnel survey as an example,through this research,it can provide detailed geophysical evidence for highway tunnels to distinguish between magmatic rock and metamorphic rock.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan...The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.展开更多
Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters ...Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.展开更多
This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures we...This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.展开更多
Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the st...Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.展开更多
Controllable rock cracking technology is crucial for the exploration and exploitation of deep underground resources.Many existing studies have been dedicated to the laser-assisted rock-weakening technology.It has been...Controllable rock cracking technology is crucial for the exploration and exploitation of deep underground resources.Many existing studies have been dedicated to the laser-assisted rock-weakening technology.It has been proved that laser irradiation can improve drilling and blasting efficiency when combined with mechanical rock fracturing methods,which are irrelevant for borehole stabilization.To improve the latter,this study used laser ablation for borehole reinforcement.The high-power laser was applied to typical rock samples(sandstone,mudstone and coal)in both dry and saturated conditions.Multi-technique observations and measurements were used to fully understand the peculiar modifications of the specimens under laser treatment,i.e.mechanical loading,acoustic emission(AE)monitoring,digital image correlation(DIC)strain field evaluation,infrared thermography(IRT)monitoring and X-ray computed tomography(CT)scanning.The results showed that,in addition to the effects already demonstrated,laser irradiation can improve the strength of the soft rock,especially in the saturated state.The process involved a complicated phase change including melting and evaporation of the matrix under high-temperature and high-pressure to form a glassy high strength silicate material.This process is similar to the reaction between molten lava and water,or the impact of an asteroid on the earth.Inspired by the results,a conceptual path for a new borehole stabilization technology using laser ablation was outlined.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are t...Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.展开更多
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa...Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.展开更多
The preservation condition of historical buildings is closely related to their ventilation environment.This study focuses on the rock temples in Wudang Mountain,specifically comparing the ventilation conditions of Yin...The preservation condition of historical buildings is closely related to their ventilation environment.This study focuses on the rock temples in Wudang Mountain,specifically comparing the ventilation conditions of Yinxian Rock and Huayang Rock.The following conclusions are drawn:(1)The main wind direction at Yinxian Rock aligns with its orientation,which is an easterly wind,while Huayang Rock experiences a westerly wind,deviating from its southwestern entrance;(2)Huayang Rock has significantly lower wind speeds compared to Yinxian Rock,with minimal airflow;(3)The surrounding environment of Huayang Rock features steep terrain,dense tree cover,and the presence of railings and other structures that impede wind entry into the cave,whereas Yinxian Rock is surrounded by fewer trees and has a flat terrain;(4)In terms of cave morphology,Yinxian Rock is completely open on the east side,while Huayang Rock's opening accounts for only half of its area and is not directly aligned with the rock temple.In summary,Huayang Rock's ventilation environment is inferior to that of Yinxian Rock,leading to more severe pathologies.It is inferred that Huayang Rock's preservation issues are closely related to its poor ventilation environment.Therefore,improving its ventilation conditions is crucial for preventive conservation.Using environmental simulation,this study compares the ventilation conditions of Huayang Rock under different wind directions and speeds,identifies the two most ideal scenarios,and proposes several feasible solutions.展开更多
Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechan...Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant Nos.U23A2060,42177143 and 42277461).
文摘Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘The nature of rock fragmentation affects the downstream mining processes like loading, hauling, and crushing the blasted rock. Therefore, it is important to evaluate rock fragmentation after blasting for choosing or designing optimal strategies for these processes. However, current techniques of rock fragmentation analysis such as sieving, image-based analysis, empirical methods or artificial intelligence-based methods entail different practical challenges, for example, excessive processing time, higher costs, applicability issues in underground environments, user-biasness, accuracy issues, etc. A classification model has been developed by utilizing image analysis techniques to overcome these challenges. The model was tested on about 7500 videos of load-haul-dump (LHD) buckets with blasted material from Malmberget iron ore mine in Sweden. A Kernel-based support vector machine (SVM) method was utilized to extract frames comprising loaded LHD buckets. Then, the blasted rock in the buckets was classified into five distinct categories using the bagging k-nearest neighbor (KNN) technique. The results showed 99.8% and 89.8% accuracy for kernel-based SVM and bagging KNN classifiers, respectively. The developed framework is efficient in terms of the operation time, cost and practicability for different mines and variate amounts of rock masses.
基金National Natural Science Foundation of China(41630640)National Science Foundation of Innovation Research Group(41521002)+1 种基金National Natural Science Foundation of China(41790445)Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2020A01).
文摘The stratum lithology and geological structure of the highway tunnel in the mountainous areas of western China are complex,and the engineering geological conditions are complicated.When the highway tunnel passes through different lithological strata,its structural design and construction technology are completely diff erent.Therefore,in order to support the tunnel design and construction,the tunnel survey Among them,the identifi cation of the contact boundary between magmatic rock and metamorphic rock and the grade of surrounding rock is very important.Through magnetotelluric survey of the Mupi tunnel of Jiuzhaigou-Mianyang highway on G8513 line,2D forward numerical simulation,1D,2D,3D inversion,and engineering geological analysis,it is revealed that the electrical characteristics of each layer,focusing on the identifi cation of the contact boundary between magmatic rock and metamorphic rock.This study provides the electrical characteristics of the magmatic rock and metamorphic rock contact boundary of the Mupi Tunnel.It is speculated that the boundary is revealed by the tunnel construction excavation,which verifies the correctness of the geophysical inversion model and provides a more detailed design basis for the tunnel design.I believe that taking the Mupi Tunnel survey as an example,through this research,it can provide detailed geophysical evidence for highway tunnels to distinguish between magmatic rock and metamorphic rock.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金supported by the National Natural Science Foundation of China(Grant No.11802332)the China Scholarship Council(Grant No.202206435003)the Fundamental Research Funds for the Central Universities(Grant No.2024ZKPYLJ03).
文摘The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.
基金National Natural Science Foundation of China,Grant/Award Number:52374153。
文摘Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.
基金supported by the National Natural Science Foundation of China(Grant No.41925012)Key task project for joint research and development of the Yangtze River Delta Science and Technology Innovation Community(Grant No.2022CSJGG1200)State Key Laboratory for GeoMechanics and Deep Underground Engineering(Grant No.SKLGDUEK2214).
文摘This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52304101 and 52004206)the China Postdoctoral Science Foundation(Grant No.2023MD734215)。
文摘Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.
基金supported by the National Natural Science Foundation of China(Grant No.51804296)China Scholarship Council Grant(Grant No.CSC#202006425019).
文摘Controllable rock cracking technology is crucial for the exploration and exploitation of deep underground resources.Many existing studies have been dedicated to the laser-assisted rock-weakening technology.It has been proved that laser irradiation can improve drilling and blasting efficiency when combined with mechanical rock fracturing methods,which are irrelevant for borehole stabilization.To improve the latter,this study used laser ablation for borehole reinforcement.The high-power laser was applied to typical rock samples(sandstone,mudstone and coal)in both dry and saturated conditions.Multi-technique observations and measurements were used to fully understand the peculiar modifications of the specimens under laser treatment,i.e.mechanical loading,acoustic emission(AE)monitoring,digital image correlation(DIC)strain field evaluation,infrared thermography(IRT)monitoring and X-ray computed tomography(CT)scanning.The results showed that,in addition to the effects already demonstrated,laser irradiation can improve the strength of the soft rock,especially in the saturated state.The process involved a complicated phase change including melting and evaporation of the matrix under high-temperature and high-pressure to form a glassy high strength silicate material.This process is similar to the reaction between molten lava and water,or the impact of an asteroid on the earth.Inspired by the results,a conceptual path for a new borehole stabilization technology using laser ablation was outlined.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金supported by the Natural Science Fund of China(No.51834003,52274073,52022014).
文摘Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172159 and 42302143)the Postdoctora Fellowship Program of the China Postdoctoral Science Foundation(CPSF)(Grant No.GZB20230864).
文摘Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.
基金Supported by the National Natural Science Foundation of China(Grant No.52278042)for the research on"Architectural issue mechanisms and defense of architectural heritage under harsh environments-Taking the rock temples of Wudang Mountain as an example."。
文摘The preservation condition of historical buildings is closely related to their ventilation environment.This study focuses on the rock temples in Wudang Mountain,specifically comparing the ventilation conditions of Yinxian Rock and Huayang Rock.The following conclusions are drawn:(1)The main wind direction at Yinxian Rock aligns with its orientation,which is an easterly wind,while Huayang Rock experiences a westerly wind,deviating from its southwestern entrance;(2)Huayang Rock has significantly lower wind speeds compared to Yinxian Rock,with minimal airflow;(3)The surrounding environment of Huayang Rock features steep terrain,dense tree cover,and the presence of railings and other structures that impede wind entry into the cave,whereas Yinxian Rock is surrounded by fewer trees and has a flat terrain;(4)In terms of cave morphology,Yinxian Rock is completely open on the east side,while Huayang Rock's opening accounts for only half of its area and is not directly aligned with the rock temple.In summary,Huayang Rock's ventilation environment is inferior to that of Yinxian Rock,leading to more severe pathologies.It is inferred that Huayang Rock's preservation issues are closely related to its poor ventilation environment.Therefore,improving its ventilation conditions is crucial for preventive conservation.Using environmental simulation,this study compares the ventilation conditions of Huayang Rock under different wind directions and speeds,identifies the two most ideal scenarios,and proposes several feasible solutions.
基金supported by financial support from the National Natural Science Foundation of China(Grant Nos.52309122 and U2340229)the Innovation Team of Changjiang River Scientific Research Institute(Grant No.CKSF2024329/YT).
文摘Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.