In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problem...Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.展开更多
Heat exchangers are the core components of energy transfer and conversion and are widely used in the energy,chemical,and other fields.In an actual operational process,load changes lead to variations in the operating c...Heat exchangers are the core components of energy transfer and conversion and are widely used in the energy,chemical,and other fields.In an actual operational process,load changes lead to variations in the operating conditions of the heat exchanger.Evaluating the heat-transfer performance is crucial for the safe and efficient operation of the system.To realize high-precision heat transfer prediction through simulations,instead of using traditional solid equipment,this study proposed a heat transfer prediction modeling method that combines three-dimensional high-precision and one-dimensional real-time dynamic simulations.This method combines the high-precision advantage of three-dimensional simulation with the real-time advantage of one-dimensional simulation.To verify the feasibility of the modeling method,a heat transfer prediction model was constructed based on the heat transfer channel structure of a CO_(2)mixture heat transfer characteristic experimental test system.The steady-state and dynamic heat transfer characteristics of CO_(2)/R32 mixtures were simulated and experimentally tested.Finally,the real-time operational capability of the heat transfer prediction model was verified using a real-time simulator.The results showed that the heat transfer prediction model modeling method proposed in this study could improve the accuracy by 1.75-4.64 times compared with the conventional one-dimensional dynamic model.The established heat transfer prediction model exhibited good accuracy for both dynamic and steady-state processes.The average relative errors with the experimental results were in the range of 0.91%-2.83%under six sets of experimental tests.Thus,the proposed heat transfer prediction model can predict the heat transfer process in real-time under all experimental heat source conditions.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ...In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected populat...At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act...Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
基金financially supported by the National Natural Science Foundation of China(Grant No.11472076).
文摘Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.
基金supported by the National Key R&D Program of China(Grant No.2022YFE0100100)。
文摘Heat exchangers are the core components of energy transfer and conversion and are widely used in the energy,chemical,and other fields.In an actual operational process,load changes lead to variations in the operating conditions of the heat exchanger.Evaluating the heat-transfer performance is crucial for the safe and efficient operation of the system.To realize high-precision heat transfer prediction through simulations,instead of using traditional solid equipment,this study proposed a heat transfer prediction modeling method that combines three-dimensional high-precision and one-dimensional real-time dynamic simulations.This method combines the high-precision advantage of three-dimensional simulation with the real-time advantage of one-dimensional simulation.To verify the feasibility of the modeling method,a heat transfer prediction model was constructed based on the heat transfer channel structure of a CO_(2)mixture heat transfer characteristic experimental test system.The steady-state and dynamic heat transfer characteristics of CO_(2)/R32 mixtures were simulated and experimentally tested.Finally,the real-time operational capability of the heat transfer prediction model was verified using a real-time simulator.The results showed that the heat transfer prediction model modeling method proposed in this study could improve the accuracy by 1.75-4.64 times compared with the conventional one-dimensional dynamic model.The established heat transfer prediction model exhibited good accuracy for both dynamic and steady-state processes.The average relative errors with the experimental results were in the range of 0.91%-2.83%under six sets of experimental tests.Thus,the proposed heat transfer prediction model can predict the heat transfer process in real-time under all experimental heat source conditions.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
基金supported by CNPC-CZU Innovation Alliancesupported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
文摘In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金supported by MOA project 111AS-7.3.4-SB-S3 and 112AS-7.3.4-SB-S3.
文摘At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
文摘Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.