期刊文献+
共找到83,872篇文章
< 1 2 250 >
每页显示 20 50 100
Real-time estimation of the structural utilization level of segmental tunnel lining
1
作者 Nicola Gottardi Steffen Freitag Gunther Meschke 《Underground Space》 SCIE EI CSCD 2024年第4期132-145,共14页
Over the last decades,an expansion of the underground network has been taking place to cope with the increasing amount of moving people and freight.As a consequence,it is of vital importance to guarantee the full func... Over the last decades,an expansion of the underground network has been taking place to cope with the increasing amount of moving people and freight.As a consequence,it is of vital importance to guarantee the full functionality of the tunnel network by means of preventive maintenance and the monitoring of the tunnel lining state over time.A new method has been developed for the real-time prediction of the utilization level in tunnel segmental linings based on input monitoring data.The new concept is founded on a framework,which encompasses an offline and an online stage.In the former,the generation of feedforward neural networks is accomplished by employing synthetically produced data.Finite element simulations of the lining structure are conducted to analyze the structural response under multiple loading conditions.The scenarios are generated by assuming ranges of variation of the model input parameters to account for the uncertainty due to the not fully determined in situ conditions.Input and target quantities are identified to better assess the structural utilization of the lining.The latter phase consists in the application of the methodological framework on input monitored data,which allows for a real-time prediction of the physical quantities deployed for the estimation of the lining utilization.The approach is validated on a full-scale test of segmental lining,where the predicted quantities are compared with the actual measurements.Finally,it is investigated the influence of artificial noise added to the training data on the overall prediction performances and the benefits along with the limits of the concept are set out. 展开更多
关键词 Segmental lining Artificial neural networks Structural utilization level real-time prediction Structural health monitoring Monitoring data
原文传递
Brain age estimation:premise,promise,and problems
2
作者 Jarrad Perron Ji Hyun Ko 《Neural Regeneration Research》 SCIE CAS 2025年第8期2313-2314,共2页
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou... Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders. 展开更多
关键词 estimation providing BIRTH
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation
3
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation
4
作者 Ange Chen Chengdong Wu Chuanjiang Leng 《Computers, Materials & Continua》 SCIE EI 2025年第1期173-191,共19页
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s... Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy. 展开更多
关键词 3D human pose estimation multi-view skeleton graph elaborate graph convolution operation Hourglass-GCN
在线阅读 下载PDF
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
5
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives
6
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
Continuum estimation in low-resolution gamma-ray spectra based on deep learning
7
作者 Ri Zhao Li-Ye Liu +5 位作者 Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 《Nuclear Science and Techniques》 2025年第2期5-17,共13页
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ... In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications. 展开更多
关键词 Gamma-ray spectrum Continuum estimation Deep learning Convolutional neural network End-to-end prediction
在线阅读 下载PDF
Improvement of Radar Quantitative Precipitation Estimation Based on Real-Time Adjustments to Z-R Relationships and Inverse Distance Weighting Correction Schemes 被引量:17
8
作者 王改利 刘黎平 丁媛媛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期575-584,共10页
The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In thi... The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In this study, a real-time adjustment to the radar reflectivity rainfall rates (Z R) relationship scheme and the gauge-corrected, radar-based, estimation scheme with inverse distance weighting interpolation was devel- oped. Based on the characteristics of the two schemes, the two-step correction technique of radar quantitative precipitation estimation is proposed. To minimize the errors between radar quantitative precipitation es- timations and rain gauge observations, a real-time adjustment to the Z R relationship scheme is used to remove systematic bias on the time-domain. The gauge-corrected, radar-based, estimation scheme is then used to eliminate non-uniform errors in space. Based on radar data and rain gauge observations near the Huaihe River, the two-step correction technique was evaluated using two heavy-precipitation events. The results show that the proposed scheme improved not only in the underestimation of rainfall but also reduced the root-mean-square error and the mean relative error of radar-rain gauge pairs. 展开更多
关键词 precipitation estimation adjusted Z R relationship gauge correction
在线阅读 下载PDF
Restoring force correction based on online discrete tangent stiffness estimation method for real-time hybrid simulation 被引量:2
9
作者 Huang Liang Guo Tong +1 位作者 Chen Cheng Chen Menghui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期805-820,共16页
In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This pa... In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS. 展开更多
关键词 online discrete tangent stiffness estimation restoring force correction fuzzy segment parameter updating real-time hybrid simulation
在线阅读 下载PDF
Real-time origin-destination matrices estimation for urban rail transit network based on structural state-space model 被引量:2
10
作者 姚向明 赵鹏 禹丹丹 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4498-4506,共9页
The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from au... The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from automatic fare collection(AFC) system as the real time observed passenger flow counts. For lacking of measurable passenger flow information, the proposed model employs priori O-D matrices and travel time distribution from historical travel records in AFC system to establish the dynamic system equations. An arriving rate based on travel time distribution is defined to identify the dynamic interrelations between time-varying O-D flows and observed flows, which greatly decreases the computational complexity and improve the model's applicability for large-scale network. This methodology is tested in a real transit network from Beijing subway network in China through comparing the predicted matrices with the true matrices. Case study results indicate that the proposed model is effective and applicative for estimating dynamic O-D matrices for large-scale rail transit network. 展开更多
关键词 DYNAMIC origin-destination MATRICES estimation sta
在线阅读 下载PDF
Real-Time Position and Attitude Estimation for Homing and Docking of an Autonomous Underwater Vehicle Based on Bionic Polarized Optical Guidance 被引量:8
11
作者 CHENG Haoyuan CHU Jinkui +2 位作者 ZHANG Ran GUI Xinyuan TIAN Lianbiao 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第5期1042-1050,共9页
As an important tool for marine exploration, the autonomous underwater vehicle(AUV) must home in and dock at a docking station(DS) to be recharged, repaired, or to exchange information at set intervals. However, the c... As an important tool for marine exploration, the autonomous underwater vehicle(AUV) must home in and dock at a docking station(DS) to be recharged, repaired, or to exchange information at set intervals. However, the complex and hostile underwater environment makes this process challenging. This study proposes a real-time method based on polarized optical guidance for determining the position and attitude of the AUV relative to its DS. Four polarized artificial underwater landmarks are positioned at the DS, which are recognized by the AUV vision system. Compared with light intensity, the polarization of a light beam is known to be better maintained at greater propagation distances, especially in underwater environments. The proposed method, which is inspired by the ability of marine animals to communicate, calculates the pose parameters in less than 10 ms without any other navigational information. The simulation results reveal that the angle errors are small and the position errors are no more than 0.116 m within 100 m in the coastal ocean. The results of underwater experiments further demonstrate the feasibility of the proposed method, which extends the operating distance of the AUV beyond what is currently possible while maintaining the precision of traditional optical guidance. 展开更多
关键词 polarization optical guidance AUV underwater docking position and attitude estimation
在线阅读 下载PDF
A Model of Federated Evidence Fusion for Real-time Urban Traffic State Estimation 被引量:1
12
作者 孔庆杰 刘允才 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期793-798,804,共7页
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod... In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions. 展开更多
关键词 TRAFFIC state estimation D-S EVIDENCE theory information FUSION INTELLIGENT TRANSPORTATION systems
在线阅读 下载PDF
Real-Time Urban Traffic State Estimation with A-GPS Mobile Phones as Probes 被引量:2
13
作者 Sha Tao Vasileios Manolopoulos +1 位作者 Saul Rodriguez Ana Rusu 《Journal of Transportation Technologies》 2012年第1期22-31,共10页
This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collec... This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collected by A-GPS mobile phones to track vehicles traveling on urban roads. In addition, tracking data obtained from individual mobile probes are aggregated to provide estimations of average road link speeds along rolling time periods. Moreover, the estimated average speeds are classified to different traffic condition levels, which are prepared for displaying a real-time traffic map on mobile phones. Simulation results demonstrate the effectiveness of the proposed method, which are fundamental for the subsequent development of a system demonstrator. 展开更多
关键词 TRAFFIC STATE estimation A-GPS MOBILE Phones MICROSCOPIC TRAFFIC Simulation MOBILE TRACKING
在线阅读 下载PDF
Systematic error real-time registration based onmodified input estimation 被引量:1
14
作者 jianjuan xiu kai dong you he 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期986-992,共7页
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A... In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously. 展开更多
关键词 systematic error estimation maneuvering target adaptive tracking augmented system model modified input estimationapproach.
在线阅读 下载PDF
Real-Time Frequency Estimation of Complex GMSK Signal of Green Communications Devices 被引量:1
15
作者 Umar Suleiman Dauda NikNoordini NikAbdMalik +3 位作者 Mazlina Esa Kamaludin Mohd Yusof Mohd Fairus Mohd Yusoff Mohamed Rijal Hamid 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第2期126-132,共7页
Parameter estimation of signals of universal software radio peripheral (USRP) devices is crucial to solve the problem of phase offsets of received signals in distributed beamforming. For systems that will utilize th... Parameter estimation of signals of universal software radio peripheral (USRP) devices is crucial to solve the problem of phase offsets of received signals in distributed beamforming. For systems that will utilize the closed loop feedback algorithm where the receiver needs to send the received signal strength (RSS) values periodically to the beamforming node so as to take advantage of energy conservation, the frequency and phase of these signals should be estimated before smoothening by nonlinear filters. This article presents the estimation of the frequency offsets of a Gaussian minimum shift keying (GMSK) signal from N210 USRP devices in real time by using the Radix-2 fast Fourier transform (FFT) algorithm in GNURadio. For these green communications devices, most of the needed hardware parts have been software defined, thereby reducing the supposed energy consumption. The frequency offsets from reference carrier frequencies of 900 MHz and 2.4 GHz are less than 3 kHz each before the estimation, but the average offsets are 45 Hz and 100 Hz after the estimation, respectively. The high offset value experienced with the 2.4 GHz carrier was due to consistent interference from devices on that same frequency. 展开更多
关键词 Cramer-Rao lower bound Gaussianminimum shift keying maximum likelihood estimation universal software radio peripheral.
在线阅读 下载PDF
Toward Coordination Control of Multiple Fish-Like Robots:Real-Time Vision-Based Pose Estimation and Tracking via Deep Neural Networks 被引量:2
16
作者 Tianhao Zhang Jiuhong Xiao +2 位作者 Liang Li Chen Wang Guangming Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1964-1976,共13页
Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in rea... Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in real time.This requires detecting multiple robots,estimating multi-joint postures,and tracking identities,as well as processing fast in real time.To the best of our knowledge,this challenge has not been tackled in the previous studies.In this paper,to precisely track the planar postures of multiple swimming multi-joint fish-like robots in real time,we propose a novel deep neural network-based method,named TAB-IOL.Its TAB part fuses the top-down and bottom-up approaches for vision-based pose estimation,while the IOL part with long short-term memory considers the motion constraints among joints for precise pose tracking.The satisfying performance of our TAB-IOL is verified by testing on a group of freely swimming fish-like robots in various scenarios with strong disturbances and by a deed comparison of accuracy,speed,and robustness with most state-of-the-art algorithms.Further,based on the precise pose estimation and tracking realized by our TAB-IOL,several formation control experiments are conducted for the group of fish-like robots.The results clearly demonstrate that our TAB-IOL lays a solid foundation for the coordination control of multiple fish-like robots in a real working environment.We believe our proposed method will facilitate the growth and development of related fields. 展开更多
关键词 Deep neural networks formation control multiple fish-like robots pose estimation pose tracking
在线阅读 下载PDF
Real-time road traffic states estimation based on kernel-KNN matching of road traffic spatial characteristics 被引量:2
17
作者 XU Dong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2453-2464,共12页
The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact... The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy. 展开更多
关键词 road traffic kernel function k nearest neighbor (KNN) state estimation spatial characteristics
在线阅读 下载PDF
A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO_4 Battery 被引量:1
18
作者 乔荣学 张明建 +3 位作者 刘屹东 任文举 林原 潘锋 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期182-185,共4页
The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two param... The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two parameters is crucial to realize a safe and reliable battery application. However, this is a great problem for LiFePO4 batteries due to the large constant potential plateau in the charge/discharge process. Here we propose a combined SOC and SOH co-estimation method based on the experimental test under the simulating electric vehicle working condition. A first-order resistance-capacitance equivalent circuit is used to model the battery cell, and three parameter values, ohmic resistance (Rs), parallel resistance (Rp) and parallel capacity (Cp), are identified from a real-time experimental test. Finally we find that Rp and Cp could be utilized to make a judgement on the SOIl. More importantly, the linear relationship between Cp and the SOC is established to make the estimation of the SOC for the first time. 展开更多
关键词 of in is on SOC A Novel real-time State-of-Health and State-of-Charge Co-estimation Method for LiFePO4 Battery SOH for
在线阅读 下载PDF
A Real-time Updated Model Predictive Control Strategy for Batch Processes Based on State Estimation
19
作者 杨国军 李秀喜 钱宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期318-329,共12页
Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computati... Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters. 展开更多
关键词 batch process exothermic batch reactor nonlinear model predictive control state estimation real-time model update
在线阅读 下载PDF
Real-Time Maqam Estimation Model in Max/MSP Configured for the Nāy
20
作者 Fadi M. Al-Ghawanmeh Mohammad T. Al-Ghawanmeh Mohammad W. Abed 《International Journal of Communications, Network and System Sciences》 2016年第2期39-52,共16页
Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visu... Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively. 展开更多
关键词 real-time Music Systems Arab Music Maqam estimation Nāy Music Signal Processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部