期刊文献+
共找到403篇文章
< 1 2 21 >
每页显示 20 50 100
ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection
1
作者 Wenju Wang Zehua Gu +2 位作者 Bang Tang Sen Wang Jianfei Hao 《Computers, Materials & Continua》 2025年第2期2389-2414,共26页
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode... Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods. 展开更多
关键词 Spatio-temporal action detection encoder-decoder cross-scale fusion multi-constraint loss function
在线阅读 下载PDF
TAD-Net:An approach for real-time action detection based on temporal convolution network and graph convolution network in digital twin shop-floor[version 1;peer review:2 approved] 被引量:1
2
作者 Qing Hong Yifeng Sun +2 位作者 Tingyu Liu Liang Fu Yunfeng Xie 《Digital Twin》 2021年第1期39-56,共18页
Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on th... Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on the production safety and efficiency of a shop-floor,however,because of the high individual initiative of humans,it is difficult to realize real-time action detection in a digital twin shop-floor.Methods:We proposed a real-time detection approach for shop-floor production action.This approach used the sequence data of continuous human skeleton joints sequences as the input.We then reconstructed the Joint Classification-Regression Recurrent Neural Networks(JCR-RNN)based on Temporal Convolution Network(TCN)and Graph Convolution Network(GCN).We called this approach the Temporal Action Detection Net(TAD-Net),which realized real-time shop-floor production action detection.Results:The results of the verification experiment showed that our approach has achieved a high temporal positioning score,recognition speed,and accuracy when applied to the existing Online Action Detection(OAD)dataset and the Nanjing University of Science and Technology 3 Dimensions(NJUST3D)dataset.TAD-Net can meet the actual needs of the digital twin shop-floor.Conclusions:Our method has higher recognition accuracy,temporal positioning accuracy,and faster running speed than other mainstream network models,it can better meet actual application requirements,and has important research value and practical significance for standardizing shop-floor production processes,reducing production security risks,and contributing to the understanding of real-time production action. 展开更多
关键词 Digital twin shop-floor Production action real-time action detection TAD-Net TCN GCN
原文传递
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
3
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
在线阅读 下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
4
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
在线阅读 下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
5
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
在线阅读 下载PDF
A YOLOv8-CE-based real-time traffic sign detection and identification method for autonomous vehicles
6
作者 Yuechen Luo Yusheng Ci +1 位作者 Hexin Zhang Lina Wu 《Digital Transportation and Safety》 2024年第3期82-91,共10页
Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL... Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B. 展开更多
关键词 YOLOv8-CE-based real-time Traffic SIGNS detection
在线阅读 下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
7
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
在线阅读 下载PDF
Comparison of ligase detection reaction and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B 被引量:3
8
作者 Xiao-Ling Wang Song-Gang Xie +3 位作者 Ling Zhang Wei-Xia Yang Xing Wang Hong-Zhi Jin 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第1期120-124,共5页
AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 c... AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 chronic hepatitis B patients with low abundant lamivudine-resistant mutations were tested with LDR and real-time PCR. Time required and reagent cost for both assays were evaluated.RESULTS: Real-time PCR detected 100, 50, 10, 1 and 0.1% of YIDD plasmid, whereas LDR detected 100, 50, 10, 1, 0.1, and 0.01% of YIDD plasmid, in mixtures with YMDD plasmid of 106 copies/mL. Among the 52 clinical serum samples, completely concordant results were obtained for all samples by both assays, and 39 YIDD, 9 YVDD, and 4 YIDD/YVDD were detected. Cost and time required for LDR and real-time PCR are 60/80 CNY (8/10.7 US dollars) and 4.5/2.5 h, respectively.CONCLUSION: LDR and real-time PCR are both sensitive and inexpensive methods for monitoring low abundant YMDD mutants during lamivudine therapy in patients with chronic hepatitis B. LDR is more sensitive and less expensive, while real-time PCR is more rapid. 展开更多
关键词 YMDD mutants Hepatitis B virus real-time PCR Ligase detection reaction
在线阅读 下载PDF
Development of Quantitative Real-time Polymerase Chain Reaction for the Detection of Vibrio vulnificus Based on Hemolysin (vvhA) Coding System
9
作者 ZENG-HUI WU YONG-LIANG LOU +1 位作者 YI-YU LU JIE YAN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第4期296-301,共6页
Objective To establish a TaqMan real-time fluorescent quantitative PCR to detect Vibrio vulnificus based on the hemolysin gene (vvhA) coding cytolysin. Methods Primers and probes in the conserved region of the vvhA ... Objective To establish a TaqMan real-time fluorescent quantitative PCR to detect Vibrio vulnificus based on the hemolysin gene (vvhA) coding cytolysin. Methods Primers and probes in the conserved region of the vvhA gene sequence were designed for the TaqMan real-time PCR to detect 100 bp amplicon from V. vulnificus DNA. Recombinant plasmid pMD19-vvhA100 was constructed and used as a positive control during the detection. Minimal amplification cycles (Ct value) and fluorescence intensity enhancement (ARn value) were used as observing indexes to optimize the reaction conditions of TaqMan real-time PCR. The TaqMan assay for the detection of Vbirio vulnificus was evaluated in pure culture, mice tissue which artificially contaminated Vibrio vulnificus and clinical samples. Results The established TaqMan real-time PCR showed positive results only for Vibrio vulnificus DNA and pMD19-vvhA100. The standard curve was plotted and the minimum level of the vvhA target from the recombinant plasmid DNA was 103 copies with a Ct value of 37.94±0.19, as the equivalent of 0.01 ng purified genomic DNA of Vibrio vulnificus. The results detected by TaqMan PCR were positive for the 16 clinical samples and all the specimens of peripheral blood and subcutaneous tissue of mice which were infected with Vibrio vulnificus. Conclusion TaqMan real-time PCR is a rapid, effective, and quantitative tool to detect Vibro vulnificus, and can be used in clinical laboratory diagnosis of septicemia and wound infection caused by Vibrio vulnificus. 展开更多
关键词 Vibrio vulnificus vvhA gene TaqMan probe real-time quantitative PCR detection
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
10
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
Abnormal Action Detection Based on Parameter-Efficient Transfer Learning in Laboratory Scenarios
11
作者 Changyu Liu Hao Huang +2 位作者 Guogang Huang Chunyin Wu Yingqi Liang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4219-4242,共24页
Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca... Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety. 展开更多
关键词 Parameter-efficient transfer learning laboratory scenarios TubeRAPT abnormal action detection
在线阅读 下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
12
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
在线阅读 下载PDF
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain 被引量:10
13
作者 Qianyun Zhang Kaveh Barri +1 位作者 Saeed K.Babanajad Amir H.Alavi 《Engineering》 SCIE EI 2021年第12期1786-1796,共11页
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen... This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection. 展开更多
关键词 Crack detection Concrete bridge deck Deep learning real-time
在线阅读 下载PDF
A fast and adaptive method for automatic weld defect detection in various real-time X-ray imaging systems 被引量:10
14
作者 邵家鑫 都东 +2 位作者 石涵 常保华 郭桂林 《China Welding》 EI CAS 2012年第1期8-12,共5页
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me... A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems. 展开更多
关键词 non-destructive testing real-time X-ray imaging weld defect automatie detection
在线阅读 下载PDF
Real-time Fluorescence PCR Method for Detection of Burkholderia glumae from Rice 被引量:5
15
作者 FANG Yuan XU Li-hui TIAN Wen-xiao HUAI Yan YU Shan-hong LOU Miao-miao XIE Guan-lin 《Rice science》 SCIE 2009年第2期157-160,共4页
Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further ... Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100. 展开更多
关键词 Burkholderia glumae bacterial grain rot detection real-time fluorescence polymerase chain reaction DCE
在线阅读 下载PDF
LDA-ID:An LDA-Based Framework for Real-Time Network Intrusion Detection 被引量:4
16
作者 Weidong Zhou Shengwei Lei +1 位作者 Chunhe Xia Tianbo Wang 《China Communications》 SCIE CSCD 2023年第12期166-181,共16页
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ... Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others. 展开更多
关键词 feature overlap LDA-ID optimal topic number determination real-time intrusion detection
在线阅读 下载PDF
Real-time RT-PCR Assay for the detection of Tahyna Virus 被引量:4
17
作者 LI Hao CAO Yu Xi +6 位作者 HE Xiao Xia FU Shi Hong LYU Zhi HE Ying GAO Xiao Yan LIANG Guo Dong WANG Huan Yu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第5期374-377,共4页
A real-time RT-PCR (RT-qPCR) assay for the detection of Tahyna virus was developed to monitor Tahyna virus infection in field-collected vector mosquito samples. The targets selected for the assay were S segment sequ... A real-time RT-PCR (RT-qPCR) assay for the detection of Tahyna virus was developed to monitor Tahyna virus infection in field-collected vector mosquito samples. The targets selected for the assay were S segment sequences encoding the nucleocapsid protein from the Tahyna virus. Primers and probes were selected in conserved regions by aligning genetic sequences from various Tahyna virus strains available from GenBank. The sensitivity of the RT-qPCR approach was compared to that of a standard plaque assay in BHK cells. RT-qPCR assay can detect 4.8 PFU of titrated Tahyna virus. Assay specificities were determined by testing a battery of arboviruses, including representative strains of Tahyna virus and other arthropod-borne viruses from China. Seven strains of Tahyna virus were confirmed as positive; the other seven species of arboviruses could not be detected by RT-qPCR. Additionally, the assay was used to detect Tahyna viral RNA in pooled mosquito samples. The RT-qPCR assay detected Tahyna virus in a sensitive, specific, and rapid manner; these findings support the use of the assay in viral surveillance. 展开更多
关键词 PCR real-time RT-PCR Assay for the detection of Tahyna Virus TIME RT
在线阅读 下载PDF
A real-time PCR targeted to the upstream regions of HlyB for specific detection of Edwardsiella tarda 被引量:2
18
作者 谢国驷 黄倢 +4 位作者 张庆利 韩娜娜 史成银 王秀华 刘庆慧 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期731-737,共7页
Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed ur... Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples. 展开更多
关键词 Edwardsiella tarda TAQMAN real-time PCR detection
在线阅读 下载PDF
Development and validation of a TaqMan^(TM) fluorescent quantitative real-time PCR assay for the rapid detection of Edwardsiella tarda 被引量:2
19
作者 XIE Guosi HUANG Jie +3 位作者 ZHANG Qingli HAN Nana SHI Chengyin WANG Xiuhua 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期140-148,共9页
Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In t... Edwardsiella tarda is one of the most important emerging pathogens in tile global aquaculture industries. As such, an accurate diagnosis and quantitative analytical methods are urgently needed for this bacterium. In this study, primers and a TaqMan probe specific to the conservative sequences of the 16S rRNA gene of E. tarda were designed. The concentration of primers and TaqMan probe were optimized to 200 nmol/L and 120 nmol/L, respectively. The detection sensitivity of the FQ- PCR assay was determined to be as low as five copies of the target sequence per reaction using the pGEM-16S rDNA recombinant plasmid as a template, which was 100 times more sensitive than conventional PCR. A standard curve by plotting the threshold cycle values (y) against the common logarithmic copies (logl0n~ as x; n~ is copy number) of pGEM-16S rDNA was generated. The results of intra- and inter-assay variability tests demonstrate that the established FQ-PCR method was highly reproducible. The assay was specific for E. tarda as it showed that there was no cross-reactivity to eight additional bacterial pathogen strains in aquaculture. Thus, the FQ-PCR assay has the potential for diagnostic purposes and for other applications, especially for the rapid detection and quantification of low-grade E. tarda infections. 展开更多
关键词 Edwardsiella tarda TAQMAN real-time PCR detection 16S rDNA
在线阅读 下载PDF
Real-time RT-PCR Assay for the Detection of Culex flavivirus 被引量:2
20
作者 CAO Yu Xi HE Xiao Xia +5 位作者 FU Shi Hong HE Ying LI Hao GAO Xiao Yan LIANG Guo Dong WANG Huan Yu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第12期917-919,共3页
Based on the Culex flavivirus (CxFV) E gene sequences in GenBank, CxFV-specific primers and probes were designed for real-time reverse transcription-polymerase chain reaction (RT-qPCR). The specificity test revealed t... Based on the Culex flavivirus (CxFV) E gene sequences in GenBank, CxFV-specific primers and probes were designed for real-time reverse transcription-polymerase chain reaction (RT-qPCR). The specificity test revealed that CxFV could be detected using RT-qPCR with the specific CxFV primers and probes; other species of arboviruses were not detected. The stability test demonstrated a coefficient of variation of <1.5%. A quantitative standard curve for CxFV RT-qPCR was established. Quantitative standard curve analysis revealed that the lower detection limit of the RT-qPCR system is 100 copies/mu L. Moreover, RT-qPCR was used to detect CxFV viral RNA in mosquito pool samples. In conclusion, we established a real-time RT-PCR assay for CxFV detection, and this assay is more sensitive and efficient than general RT-PCR. This technology may be used to monitor changes in the environmental virus levels. 展开更多
关键词 PCR real-time RT-PCR Assay for the detection of Culex flavivirus RT time
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部