This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity a...Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.展开更多
Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequ...Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compres- sive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.展开更多
The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pres...The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.展开更多
Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses sign...Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.展开更多
The sediments samples were collected from the Dikrong River at various sites to assess the weathering nature and mineral characterization. The Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF) spectroscop...The sediments samples were collected from the Dikrong River at various sites to assess the weathering nature and mineral characterization. The Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF) spectroscopic techniques have been used to characterization of minerals in the sediment samples. The plagioclase index of alteration (PIA), chemical index of alteration (CIA) and index of compositional variation (ICV) are investigated for evaluating the weathering nature in the sediment. The obtained results show the presence of quartz, feldspar in different structure and kaolinite as major minerals. Carbonates and organic carbon are found as minor minerals. The correlations of SiO2 with major elements are authenticated the presence of bulk quartz grains and primary depositional environment. The presence of metamorphosed pyrophanite (MnTiO3) in the adjoined areas is reported. The presence of infrared absorption peaks in between 1611 - 1622 cm?1 in this study is indicative to the weathered metamorphic origin of the silicate minerals. The index of compositional variation indicates the presence of less clay minerals and more rock forming minerals such as plagioclase and alkali-feldspar. The obtained results exhibit the area belongs to the intermediate silicate weathering.展开更多
The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium ...The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).展开更多
Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lowe...Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lower CO2 concentrations have to be improved.In this contribution,four Li4Si O4 sorbents were synthesized from zeolite precursors MCM-41,MCM-48,TS-1,and ZSM-5.The CO2 uptake,cycling stability and the optimal CO2 sorption conditions were investigated.Among the samples,MCM-41-Li4Si O4 showed the best cycling stability at 650°C,with a stable reversible CO2 uptake of 29.1 wt%under 100 vol%CO2 during 20 cycles.But its sorption kinetics and CO2 uptakes at lower temperatures and lower CO2 concentrations need to be improved.We then demonstrated that the sorption kinetics can be improved by modifying the MCM-41 precursor with metals such as Al,Ti,Ca,and Na.The Na-MCM-41-Li4Si O4 sample exhibited the highest sorption rate,and reached the equilibrium sorption capacity close to the theoretical value of 36.7 wt%within 20 min.In addition,we proved that coating the MCM-41-Li4Si O4with Na2CO3and K2CO3can significantly increase the CO2uptakes at lower temperatures(e.g.550℃)and lower CO2concentrations(10–20 vol%).At 550℃ and under 20 vol%CO2,15 wt%K2CO3-MCM-41-Li4Si O4 and 10 wt%Na2CO3-MCM-41-Li4Si O4 sorbents resulted in a CO2 uptake of 32.2 wt%and 34.7 wt%,respectively,which are much higher than that of MCM-41-Li4Si O4(11.8 wt%).These two sorbents also showed good cycling stability.The promoiting mechasnim by alkali carbonate coating was discussed by a doubleshell model.展开更多
Investigating the immobilization of CO2,previous basalt-water-CO2 interaction studies revealed the formation of carbonates over a short period,but with the extensive formation of secondary silicates(SS).The mechanisms...Investigating the immobilization of CO2,previous basalt-water-CO2 interaction studies revealed the formation of carbonates over a short period,but with the extensive formation of secondary silicates(SS).The mechanisms involved in these processes remain unresolved,so the present study was undertaken to understand secondary mineral formation mechanisms.XRPD and Rietveld refinement data for neo-formed minerals show a drastic decrease in the Ca-O bond length,with the calcite structure degenerating after 80 h(hours).However,SEM images and EDS data revealed that a longer interaction time resulted in the formation of chlorite and smectite,adjacent to basalt grains which prevent basaltwater-CO2 interaction to form carbonates,thus restricting carbonate formation.As a result of this,the CO2 mineralization rate is initially high(till 80 h),but it later reduces drastically.It is evident that,for such temperature-controlled transformations,low temperature is conducive to minimizing SS surface coating at the time of mineral carbonation.展开更多
In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile(which have the same general formula Mg3Si2O5(OH)4), and talc(Mg3Si4O10(OH)2) were reacted with KOH to prepare catal...In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile(which have the same general formula Mg3Si2O5(OH)4), and talc(Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20 wt% K and treatment at 700–900°C led to a solid-state reaction to mainly form the K2MgSiO4 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSiO4 formation. All the materials showed catalytic activity for the transesterification of soybean oil(1:6 of oil : methanol molar ratio, 5 wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSiO4.展开更多
This paper presents a new model for the calculation of the standard entropies of solidcomplex silicates as follows.4. =53.63+9914-72.81 J/kmol (R=0.9915, Sd=5.39)Sixty complex silicates have been investigated, and go...This paper presents a new model for the calculation of the standard entropies of solidcomplex silicates as follows.4. =53.63+9914-72.81 J/kmol (R=0.9915, Sd=5.39)Sixty complex silicates have been investigated, and good agreement was found between theestimated and experimental entropy values.展开更多
The effect of metallic cations on the Si-O(br) bond and the Si-O(ter) bond was studied with CNDO/2 MO calculations. The characteristics of them were discussed, which were found to vary with the bonding and coordi nati...The effect of metallic cations on the Si-O(br) bond and the Si-O(ter) bond was studied with CNDO/2 MO calculations. The characteristics of them were discussed, which were found to vary with the bonding and coordi nation situation of oxygen as well as the effect of metallic cations on oxygen. The conclusions obtained may be well used in the fields of mineralogy, geochemistry, silicate materials, pyrometallurgy and so on.展开更多
Mostly fed with grass in fresh or conserved form,cattle and other livestock have to cope with silicate defence bodies from plants(phytoliths)and environmental silicates(grit),which abrade tooth enamel and could additi...Mostly fed with grass in fresh or conserved form,cattle and other livestock have to cope with silicate defence bodies from plants(phytoliths)and environmental silicates(grit),which abrade tooth enamel and could additionally interact with various salivary proteins.To detect potential candidates for silicate-binding proteins,bovine whole saliva was incubated with grass-derived phytoliths and silicates.Interactions of salivary proteins with pulverized bovine dental enamel and dentine were additionally analysed.After intense washing,the powder fractions were loaded onto 1D-polyacrylamide gels,most prominent adhesive protein bands were cut out and proteins were identified by mass spectrometry within three independent replicates.All materials were mainly bound by bovine odorant-binding protein,bovine salivary protein 30×10^(3) and carbonic anhydrase VI.The phytolith/silicate fraction showed additional stronger interaction with haemoglobinβand lactoperoxidase.Conceivably,the binding of these proteins to the surfaces may contribute to biological processes occurring on them.展开更多
In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toug...In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.展开更多
Mostly fed with grass in fresh or conserved form, cattle and other livestock have to cope with silicate defence bodies from plants (phytoliths) and environmental silicates (grit), which abrade tooth enamel and cou...Mostly fed with grass in fresh or conserved form, cattle and other livestock have to cope with silicate defence bodies from plants (phytoliths) and environmental silicates (grit), which abrade tooth enamel and could additionally interact with various salivary proteins. To detect potential candidates for silicate-binding proteins, bovine whole saliva was incubated with grass-derived phytoliths and silicates. Interactions of salivary proteins with pulverized bovine dental enamel and dentine were additionally analysed. After intense washing, the powder fractions were loaded onto 1D-polyacrylamide gels, most prominent adhesive protein bands were cut out and proteins were identified by mass spectrometry within three independent replicates. All materials were mainly botmd by bovine odorant-binding protein, bovine salivary protein 30× 10^3 and carbonic anhydrase VI. The phytolith/silicate fraction showed additional stronger interaction with haemoglobin β and lactoperoxidase. Conceivably, the binding of these proteins to the surfaces may contribute to biological processes occurring on them.展开更多
Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459...Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.展开更多
Thermal barrier coating (TBC) revolutionized the industry by allowing higher operating temperatures for equipment, such as gas turbines in the aeronautical industry. However, at high temperatures, the TBC is exposed t...Thermal barrier coating (TBC) revolutionized the industry by allowing higher operating temperatures for equipment, such as gas turbines in the aeronautical industry. However, at high temperatures, the TBC is exposed to the attack of molten silicates, known as CMAS (Calcium-Magnesium-Alumino-Silicate), which are particles from the environment that infiltrate the TBC, causing delamination. In this study, samples coated with TBC by thermal spray and covered with CMAS were evaluated at temperatures of 1200˚C and 1250˚C. For each temperature, exposure times of 1 h and 5 h were used. Samples with longer exposure time had a considerable volume increase. The main contribution of this work was to demonstrate the non-wettability of the CMAS, even in the 5-h heat treatments, which prevented its infiltration in the deeper regions. The conditions to guarantee the formation of the silicate and its consequent wettability are also discussed.展开更多
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
文摘Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.
文摘Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compres- sive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.
基金Project supported by the Science Fund from the Key Laboratory of Earthquake Prediction,Institute of Earthquake Science,China Earthquake Administration(Grant No.2016IES010104)the National Natural Science Foundation of China(Grant Nos.41174071,41273073,41373060,and 41573121)
文摘The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.
基金supported by the National Natural Science Foundation(21706290)Natural Science Foundation of Shandong Province(ZR2017MB004,ZR2017BB007)+5 种基金Postdoctoral Research Funding of Shandong Province(201703016)Fundamental Research Funding of Qingdao(17-1-1-67-jch,17-1-1-80-jch)Qingdao Postdoctoral Research Funding(BY20170210)“the Fundamental Research Funds for the Central Universities”(18CX02145A,17CX02017A)new faculty start-up funding from China University of Petroleum(YJ201601058)China Postdoctoral Science Foundation(2017M612374)。
文摘Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.
文摘The sediments samples were collected from the Dikrong River at various sites to assess the weathering nature and mineral characterization. The Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF) spectroscopic techniques have been used to characterization of minerals in the sediment samples. The plagioclase index of alteration (PIA), chemical index of alteration (CIA) and index of compositional variation (ICV) are investigated for evaluating the weathering nature in the sediment. The obtained results show the presence of quartz, feldspar in different structure and kaolinite as major minerals. Carbonates and organic carbon are found as minor minerals. The correlations of SiO2 with major elements are authenticated the presence of bulk quartz grains and primary depositional environment. The presence of metamorphosed pyrophanite (MnTiO3) in the adjoined areas is reported. The presence of infrared absorption peaks in between 1611 - 1622 cm?1 in this study is indicative to the weathered metamorphic origin of the silicate minerals. The index of compositional variation indicates the presence of less clay minerals and more rock forming minerals such as plagioclase and alkali-feldspar. The obtained results exhibit the area belongs to the intermediate silicate weathering.
文摘The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).
基金supported by the National Natural Science Foundation of China (51622801, 51572029)Beijing Excellent Young Scholar (2015000026833ZK11)the Beijing Natural Science Foundation (2184114)
文摘Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lower CO2 concentrations have to be improved.In this contribution,four Li4Si O4 sorbents were synthesized from zeolite precursors MCM-41,MCM-48,TS-1,and ZSM-5.The CO2 uptake,cycling stability and the optimal CO2 sorption conditions were investigated.Among the samples,MCM-41-Li4Si O4 showed the best cycling stability at 650°C,with a stable reversible CO2 uptake of 29.1 wt%under 100 vol%CO2 during 20 cycles.But its sorption kinetics and CO2 uptakes at lower temperatures and lower CO2 concentrations need to be improved.We then demonstrated that the sorption kinetics can be improved by modifying the MCM-41 precursor with metals such as Al,Ti,Ca,and Na.The Na-MCM-41-Li4Si O4 sample exhibited the highest sorption rate,and reached the equilibrium sorption capacity close to the theoretical value of 36.7 wt%within 20 min.In addition,we proved that coating the MCM-41-Li4Si O4with Na2CO3and K2CO3can significantly increase the CO2uptakes at lower temperatures(e.g.550℃)and lower CO2concentrations(10–20 vol%).At 550℃ and under 20 vol%CO2,15 wt%K2CO3-MCM-41-Li4Si O4 and 10 wt%Na2CO3-MCM-41-Li4Si O4 sorbents resulted in a CO2 uptake of 32.2 wt%and 34.7 wt%,respectively,which are much higher than that of MCM-41-Li4Si O4(11.8 wt%).These two sorbents also showed good cycling stability.The promoiting mechasnim by alkali carbonate coating was discussed by a doubleshell model.
基金financial support in the form of a Project Grant (IS-STAC/CO2-SR-79/10/G)
文摘Investigating the immobilization of CO2,previous basalt-water-CO2 interaction studies revealed the formation of carbonates over a short period,but with the extensive formation of secondary silicates(SS).The mechanisms involved in these processes remain unresolved,so the present study was undertaken to understand secondary mineral formation mechanisms.XRPD and Rietveld refinement data for neo-formed minerals show a drastic decrease in the Ca-O bond length,with the calcite structure degenerating after 80 h(hours).However,SEM images and EDS data revealed that a longer interaction time resulted in the formation of chlorite and smectite,adjacent to basalt grains which prevent basaltwater-CO2 interaction to form carbonates,thus restricting carbonate formation.As a result of this,the CO2 mineralization rate is initially high(till 80 h),but it later reduces drastically.It is evident that,for such temperature-controlled transformations,low temperature is conducive to minimizing SS surface coating at the time of mineral carbonation.
文摘In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile(which have the same general formula Mg3Si2O5(OH)4), and talc(Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20 wt% K and treatment at 700–900°C led to a solid-state reaction to mainly form the K2MgSiO4 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSiO4 formation. All the materials showed catalytic activity for the transesterification of soybean oil(1:6 of oil : methanol molar ratio, 5 wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSiO4.
文摘This paper presents a new model for the calculation of the standard entropies of solidcomplex silicates as follows.4. =53.63+9914-72.81 J/kmol (R=0.9915, Sd=5.39)Sixty complex silicates have been investigated, and good agreement was found between theestimated and experimental entropy values.
文摘The effect of metallic cations on the Si-O(br) bond and the Si-O(ter) bond was studied with CNDO/2 MO calculations. The characteristics of them were discussed, which were found to vary with the bonding and coordi nation situation of oxygen as well as the effect of metallic cations on oxygen. The conclusions obtained may be well used in the fields of mineralogy, geochemistry, silicate materials, pyrometallurgy and so on.
基金This research was supported by the German Research Foundation(DFG,SU 124/15-1).
文摘Mostly fed with grass in fresh or conserved form,cattle and other livestock have to cope with silicate defence bodies from plants(phytoliths)and environmental silicates(grit),which abrade tooth enamel and could additionally interact with various salivary proteins.To detect potential candidates for silicate-binding proteins,bovine whole saliva was incubated with grass-derived phytoliths and silicates.Interactions of salivary proteins with pulverized bovine dental enamel and dentine were additionally analysed.After intense washing,the powder fractions were loaded onto 1D-polyacrylamide gels,most prominent adhesive protein bands were cut out and proteins were identified by mass spectrometry within three independent replicates.All materials were mainly bound by bovine odorant-binding protein,bovine salivary protein 30×10^(3) and carbonic anhydrase VI.The phytolith/silicate fraction showed additional stronger interaction with haemoglobinβand lactoperoxidase.Conceivably,the binding of these proteins to the surfaces may contribute to biological processes occurring on them.
基金the High Technology Research and Development Programme of China.
文摘In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.
基金supported by the German Research Foundation (DFG, SU 124/15-1)
文摘Mostly fed with grass in fresh or conserved form, cattle and other livestock have to cope with silicate defence bodies from plants (phytoliths) and environmental silicates (grit), which abrade tooth enamel and could additionally interact with various salivary proteins. To detect potential candidates for silicate-binding proteins, bovine whole saliva was incubated with grass-derived phytoliths and silicates. Interactions of salivary proteins with pulverized bovine dental enamel and dentine were additionally analysed. After intense washing, the powder fractions were loaded onto 1D-polyacrylamide gels, most prominent adhesive protein bands were cut out and proteins were identified by mass spectrometry within three independent replicates. All materials were mainly botmd by bovine odorant-binding protein, bovine salivary protein 30× 10^3 and carbonic anhydrase VI. The phytolith/silicate fraction showed additional stronger interaction with haemoglobin β and lactoperoxidase. Conceivably, the binding of these proteins to the surfaces may contribute to biological processes occurring on them.
基金supported by Yangzhou Engineering Technology Research Center of Petrochemical New Materials(YZM2015086)Yangzhou Science and Technology Bureau(YZ2016269)
文摘Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.
文摘Thermal barrier coating (TBC) revolutionized the industry by allowing higher operating temperatures for equipment, such as gas turbines in the aeronautical industry. However, at high temperatures, the TBC is exposed to the attack of molten silicates, known as CMAS (Calcium-Magnesium-Alumino-Silicate), which are particles from the environment that infiltrate the TBC, causing delamination. In this study, samples coated with TBC by thermal spray and covered with CMAS were evaluated at temperatures of 1200˚C and 1250˚C. For each temperature, exposure times of 1 h and 5 h were used. Samples with longer exposure time had a considerable volume increase. The main contribution of this work was to demonstrate the non-wettability of the CMAS, even in the 5-h heat treatments, which prevented its infiltration in the deeper regions. The conditions to guarantee the formation of the silicate and its consequent wettability are also discussed.