Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the...Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the ceramic layer is ZrO2. In this study, the micro-Zr02 and the nano-ZrO2 doped with 10 wt% CeO2 as well as microZrO2 and nano-ZrO2 were prepared by air plasma spraying(APS) to study the advantages of the addition of rare earth element. The effect of CeO2 on the phase transformation of ZrO2 was studied. The results show that there are few cracks in micro-and nano-ZrO2 doped with 10 wt% CeO2,and rare earth oxides can affect the phase transformation significantly. The morphologies, hardness and elastic modulus of the four ceramic layers were also discussed.展开更多
This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant ...This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51371173)the Natural Science Foundation of Liaoning Province(No.2013024011)the Doctor Start-Up Fund of Liaoning Province(No.20121063)
文摘Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the ceramic layer is ZrO2. In this study, the micro-Zr02 and the nano-ZrO2 doped with 10 wt% CeO2 as well as microZrO2 and nano-ZrO2 were prepared by air plasma spraying(APS) to study the advantages of the addition of rare earth element. The effect of CeO2 on the phase transformation of ZrO2 was studied. The results show that there are few cracks in micro-and nano-ZrO2 doped with 10 wt% CeO2,and rare earth oxides can affect the phase transformation significantly. The morphologies, hardness and elastic modulus of the four ceramic layers were also discussed.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)+1 种基金the Introduction Of Talent and Technology Cooperation Plan Of Tianjin(14RCGFGX00849)GM Global Research&Development(GAC 1539)
文摘This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.