The orthogonality catastrophe(OC)of quantum many-body systems is an important phenomenon in condensed matter physics.Recently,an interesting relationship between the OC and the quantum speed limit(QSL)was shown(Fogart...The orthogonality catastrophe(OC)of quantum many-body systems is an important phenomenon in condensed matter physics.Recently,an interesting relationship between the OC and the quantum speed limit(QSL)was shown(Fogarty 2020 Phys.Rev.Lett.124110601).Inspired by the remarkable feature,we provide a quantitative version of the quantum average speed as another different method to investigate the measure of how it is close to the OC dynamics.We analyze the properties of an impurity qubit embedded into an isotropic Lipkin-Meshkov-Glick spin model,and show that the OC dynamics can also be characterized by the average speed of the evolution state.Furthermore,a similar behavior of the actual speed of quantum evolution and the theoretical maximal rate is shown which can provide an alternative speed-up protocol allowing us to understand some universal properties characterized by the QSL.展开更多
In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic ...In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic evolution. These unusual forms are those that are not the relatively fixed ones that are widely used in the literature. In this paper, we continue this study, providing further evidence for the validity of the conclusion above by researching some relatively more complex forms of assisted driving scheme, which generalize the ones studied in our previous work.展开更多
Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- de...Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.展开更多
In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scena...In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.展开更多
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the r...Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.展开更多
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entangl...It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels.展开更多
A heterogeneous coverage method with multiple unmanned aerial vehicle assisted sink nodes(MUAVSs)for multi-objective optimization problem(MOP)is proposed,which is based on quantum wolf pack evolution algorithm(QWPEA)a...A heterogeneous coverage method with multiple unmanned aerial vehicle assisted sink nodes(MUAVSs)for multi-objective optimization problem(MOP)is proposed,which is based on quantum wolf pack evolution algorithm(QWPEA)and power law entropy(PLE)theory.The method is composed of preset move and autonomous coordination stages for satisfying non-repeated coverage,connectedness,and energy balance of sink layer critical requirements,which is actualized to cover sensors layer in large-scale outside wireless sensor networks(WSNs).Simulation results show that the performance of the proposed technique is better than the existing related coverage technique.展开更多
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully ...In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.11875086 and11775019。
文摘The orthogonality catastrophe(OC)of quantum many-body systems is an important phenomenon in condensed matter physics.Recently,an interesting relationship between the OC and the quantum speed limit(QSL)was shown(Fogarty 2020 Phys.Rev.Lett.124110601).Inspired by the remarkable feature,we provide a quantitative version of the quantum average speed as another different method to investigate the measure of how it is close to the OC dynamics.We analyze the properties of an impurity qubit embedded into an isotropic Lipkin-Meshkov-Glick spin model,and show that the OC dynamics can also be characterized by the average speed of the evolution state.Furthermore,a similar behavior of the actual speed of quantum evolution and the theoretical maximal rate is shown which can provide an alternative speed-up protocol allowing us to understand some universal properties characterized by the QSL.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2017M620322)the National Natural Science Foundation of China(Grant No.61402188)+1 种基金Priority for the Postdoctoral Scientific and Technological Program of Hubei Province,China in 2017the Science and Technology Program of Shenzhen of China(Grant Nos.JCYJ 20170818160208570 and JCYJ 20170307160458368)
文摘In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic evolution. These unusual forms are those that are not the relatively fixed ones that are widely used in the literature. In this paper, we continue this study, providing further evidence for the validity of the conclusion above by researching some relatively more complex forms of assisted driving scheme, which generalize the ones studied in our previous work.
文摘Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.
基金Project(61273138) supported by the National Natural Science Foundation of ChinaProjects(KJ2016A169,KJ2015A242) supported by the University Natural Science Research Key Project of Anhui Province,ChinaProject(ZRC2014444) supported by the Talents Program of Anhui Science and Technology University,China
文摘In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.
基金the National Natural Science Foundation of China(No.51175321)the Innovation Program of Shanghai Municipal Education Commission(No.12ZZ158)
文摘Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61327901,61490711,61225025,11474268the Fundamental Research Funds for the Central Universities under Grant No.WK2470000018
文摘It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels.
基金Supported by the National Natural Science Foundation of China(No.61571318)Key Research and Development Project of Hainan(No.ZDYF2018006)+1 种基金Independent Innovation Fund of Tianjin UniversityDoctoral Fund Funded Projects
文摘A heterogeneous coverage method with multiple unmanned aerial vehicle assisted sink nodes(MUAVSs)for multi-objective optimization problem(MOP)is proposed,which is based on quantum wolf pack evolution algorithm(QWPEA)and power law entropy(PLE)theory.The method is composed of preset move and autonomous coordination stages for satisfying non-repeated coverage,connectedness,and energy balance of sink layer critical requirements,which is actualized to cover sensors layer in large-scale outside wireless sensor networks(WSNs).Simulation results show that the performance of the proposed technique is better than the existing related coverage technique.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61402188 and 61173050the support from the China Postdoctoral Science Foundation under Grant No.2014M552041
文摘In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-