A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepar...A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNil/3Mnl/3C01/302 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNii/3Mnl/3C01/302. The specific discharge capacity retention of the carbon-coated LiNi1/3Mnt/3Col/30z reached 85.0%-96.0% at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.展开更多
To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolys...To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolysis(PIP)methods.The weight retention change,mechanical properties,and microstructure of C/SiC/SiHfBOC before and after oxidation in air were studied in details.Microscopic analyses showed that only the interface between the ceramics and fibers was oxidized to some extent,and hafnium had been enriched on the composite surface after oxidizing at different temperature.The main oxidation products of Cf/SiC/SiHfBOC composites were Hf0_(2)and HfSi04 after oxidation at 1500℃for 60 min.Moreover,the weight retention ratio and compressive strength of the Cf/SiC/SiHfBOC composites are 83.97%and 23.88±3.11 MPa,respectively.It indicates that the Cf/SiC/SiHfBOC composites should be promising to be used for a short time in the oxidation environment at 1500℃.展开更多
Engineering of carbon/metal nanocomposites with small metal particles is promising for the development of alloy-type anodes.Herein,an Sb@C composite was developed from a commercial potassium antimony tartrate precurso...Engineering of carbon/metal nanocomposites with small metal particles is promising for the development of alloy-type anodes.Herein,an Sb@C composite was developed from a commercial potassium antimony tartrate precursor using a scalable pyrolysis method.Ultrafine Sb nanoparticles are confined within a porous carbon framework,which substantially facilitates the diffusion of Na-ion/electrons and effectively alleviates the charg-ing/discharging induced volume change.The obtained Sb@C material displays excellent electrochemical perfor-mance for Na^(+) storage.The Na^(+) diffusion behavior of Sb@C was comprehensively investigated using various methods,and its gas evolution during the discharge/charge was monitored via online mass spectrometry.Then,Sb@C was assembled into full cells.During discharge/charge processes,the Na_(3)V_(2)(PO_(4))_(2)F_(3)/Sb@C full cells de-livered a competitive working voltage of 2.95 V and a capacity retention of 93.4%(50 cycles@0.2 A g^(−1)).Considering its facile preparation method from a commercial precursor,the Sb@C composite can potentially realize a large-scale application of sodium-ion batteries.展开更多
In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This h...In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.展开更多
基金Project(U1202272)supported by the National Natural Science Foundation of China
文摘A novel synthesis method of carbon-coated LiNil/3Mnl/3COl/302 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNil/3Mnl/3C01/302 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNii/3Mnl/3C01/302. The specific discharge capacity retention of the carbon-coated LiNi1/3Mnt/3Col/30z reached 85.0%-96.0% at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.
基金supported by the Key Program of the National Natural Science Foundation of China(No.52032003)the National Natural Science Foundation of China(Nos.519720820 and 51772061)+1 种基金the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(No.6142905202112)the Heilongjiang Provincial Postdoctoral Science Foundation(No.LBH-Z20144).
文摘To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolysis(PIP)methods.The weight retention change,mechanical properties,and microstructure of C/SiC/SiHfBOC before and after oxidation in air were studied in details.Microscopic analyses showed that only the interface between the ceramics and fibers was oxidized to some extent,and hafnium had been enriched on the composite surface after oxidizing at different temperature.The main oxidation products of Cf/SiC/SiHfBOC composites were Hf0_(2)and HfSi04 after oxidation at 1500℃for 60 min.Moreover,the weight retention ratio and compressive strength of the Cf/SiC/SiHfBOC composites are 83.97%and 23.88±3.11 MPa,respectively.It indicates that the Cf/SiC/SiHfBOC composites should be promising to be used for a short time in the oxidation environment at 1500℃.
基金Taishan Scholar Founda-tion of Shandong Province and Jinan Science and Technology Bureau(2019GXRC001).
文摘Engineering of carbon/metal nanocomposites with small metal particles is promising for the development of alloy-type anodes.Herein,an Sb@C composite was developed from a commercial potassium antimony tartrate precursor using a scalable pyrolysis method.Ultrafine Sb nanoparticles are confined within a porous carbon framework,which substantially facilitates the diffusion of Na-ion/electrons and effectively alleviates the charg-ing/discharging induced volume change.The obtained Sb@C material displays excellent electrochemical perfor-mance for Na^(+) storage.The Na^(+) diffusion behavior of Sb@C was comprehensively investigated using various methods,and its gas evolution during the discharge/charge was monitored via online mass spectrometry.Then,Sb@C was assembled into full cells.During discharge/charge processes,the Na_(3)V_(2)(PO_(4))_(2)F_(3)/Sb@C full cells de-livered a competitive working voltage of 2.95 V and a capacity retention of 93.4%(50 cycles@0.2 A g^(−1)).Considering its facile preparation method from a commercial precursor,the Sb@C composite can potentially realize a large-scale application of sodium-ion batteries.
基金the National Natural Science Foundation of China(No.52032003)National Natural Science Foundation of China(Nos.51972082,52102093,and 52172041)+1 种基金Postdoctoral Research Foundation of China(No.2021M690817)the Science Foundation of National Key Laboratoryof Science and Technology on Advanced Composites in Special Environments.
文摘In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.