期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Enhancing CNN for Forensics Age Estimation Using CGAN and Pseudo-Labelling
1
作者 Sultan Alkaabi Salman Yussof Sameera Al-Mulla 《Computers, Materials & Continua》 SCIE EI 2023年第2期2499-2516,共18页
Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy ma... Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness.To improve the recognition speed and consistency,researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network(CNN).CNN requires many training images to obtain high percentage of recognition accuracy.Unfortunately,it is very difficult to get large number of samples of dental images for training the CNN due to the need to comply to privacy acts.A promising solution to this problem is a technique called Generative Adversarial Network(GAN).GAN is a technique that can generate synthetic images that has similar statistics as the training set.A variation of GAN called Conditional GAN(CGAN)enables the generation of the synthetic images to be controlled more precisely such that only the specified type of images will be generated.This paper proposes a CGAN for generating new dental images to increase the number of images available for training a CNN model to perform age estimation.We also propose a pseudolabelling technique to label the generated images with proper age and gender.We used the combination of real and generated images to trainDentalAge and Sex Net(DASNET),which is a CNN model for dental age estimation.Based on the experiment conducted,the accuracy,coefficient of determination(R2)and Absolute Error(AE)of DASNET have improved to 87%,0.85 and 1.18 years respectively as opposed to 74%,0.72 and 3.45 years when DASNET is trained using real,but smaller number of images. 展开更多
关键词 Dental forensics age estimation generative adversarial network pseudo-labelling convolutional neural network
在线阅读 下载PDF
Diabetic retinopathy identification based on multi-sourcefree domain adaptation 被引量:1
2
作者 Guang-Hua Zhang Guang-Ping Zhuo +3 位作者 Zhao-Xia Zhang Bin Sun Wei-Hua Yang Shao-Chong Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1193-1204,共12页
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel... AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients. 展开更多
关键词 diabetic retinopathy multisource-free domain adaptation pseudo-label generation softmaxconsistence minimization
在线阅读 下载PDF
Boosting Unsupervised Domain Adaptation with Soft Pseudo-Label and Curriculum Learning
3
作者 张晟嘉 林天成 徐奕 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期703-716,共14页
By leveraging data from a fully labeled source domain,unsupervised domain adaptation(UDA)im-proves classification performance on an unlabeled target domain through explicit discrepancy minimization of data distributio... By leveraging data from a fully labeled source domain,unsupervised domain adaptation(UDA)im-proves classification performance on an unlabeled target domain through explicit discrepancy minimization of data distribution or adversarial learning.As an enhancement,category alignment is involved during adaptation to reinforce target feature discrimination by utilizing model prediction.However,there remain unexplored prob-lems about pseudo-label inaccuracy incurred by wrong category predictions on target domain,and distribution deviation caused by overfitting on source domain.In this paper,we propose a model-agnostic two-stage learning framework,which greatly reduces flawed model predictions using soft pseudo-label strategy and avoids overfitting on source domain with a curriculum learning strategy.Theoretically,it successfully decreases the combined risk in the upper bound of expected error on the target domain.In the first stage,we train a model with distribution alignment-based UDA method to obtain soft semantic label on target domain with rather high confidence.To avoid overfitting on source domain,in the second stage,we propose a curriculum learning strategy to adaptively control the weighting between losses from the two domains so that the focus of the training stage is gradually shifted from source distribution to target distribution with prediction confidence boosted on the target domain.Extensive experiments on two well-known benchmark datasets validate the universal effectiveness of our proposed framework on promoting the performance of the top-ranked UDA algorithms and demonstrate its consistent su-perior performance. 展开更多
关键词 unsupervised domain adaptation(UDA) pseudo-label soft label curriculum learning
原文传递
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
4
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis 被引量:5
5
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期252-267,共16页
A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain data-set and target domain dataset simultaneousl... A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain data-set and target domain dataset simultaneously.However,data privacy makes it not always possible to access source domain dataset and target domain dataset in actual industrial equipment simulta-neously,especially for aviation component like Electro-Mechanical Actuator(EMA)whose dataset are often not shareable due to the data copyright and confidentiality.To address this problem,this paper proposes a source free unsupervised domain adaptation framework for EMA fault diagnosis.The proposed framework is a combination of feature network and classifier.Firstly,source domain datasets are only applied to train a source model.Secondly,the well-trained source model is trans-ferred to target domain and classifier is frozen based on source domain hypothesis.Thirdly,nearest centroid filtering is introduced to filter the reliable pseudo labels for unlabeled target domain data-set,and finally,supervised learning and pseudo label clustering are applied to fine-tune the trans-ferred model.In comparison with several traditional unsupervised domain adaptation methods,case studies based on low-and high-frequency monitoring signals on EMA indicate the effectiveness of the proposed method. 展开更多
关键词 Data privacy Electro-mechanical actuator pseudo-label clustering Nearest centroid filtering Unsupervised domain adaptation
原文传递
Self-corrected unsupervised domain adaptation 被引量:1
6
作者 Yunyun WANG Chao WANG +1 位作者 Hui XUE Songcan CHEN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第5期35-43,共9页
Unsupervised domain adaptation(UDA),which aims to use knowledge from a label-rich source domain to help learn unlabeled target domain,has recently attracted much attention.UDA methods mainly concentrate on source clas... Unsupervised domain adaptation(UDA),which aims to use knowledge from a label-rich source domain to help learn unlabeled target domain,has recently attracted much attention.UDA methods mainly concentrate on source classification and distribution alignment between domains to expect the correct target prediction.While in this paper,we attempt to learn the target prediction end to end directly,and develop a Self-corrected unsupervised domain adaptation(SCUDA)method with probabilistic label correction.SCUDA adopts a probabilistic label corrector to learn and correct the target labels directly.Specifically,besides model parameters,those target pseudo-labels are also updated in learning and corrected by the anchor-variable,which preserves the class candidates for samples.Experiments on real datasets show the competitiveness of SCUDA. 展开更多
关键词 unsupervised domain adaptation adversarial Learning deep neural network pseudo-labels label corrector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部