期刊文献+
共找到951篇文章
< 1 2 48 >
每页显示 20 50 100
Protein Disulfide Isomerase and Its Potential Function on Endoplasmic Reticulum Quality Control in Diatom Phaeodactylum tricornutum
1
作者 Yanhuan Lin Hua Du +3 位作者 Zhitao Ye Shuqi Wang Zhen Wang Xiaojuan Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期137-150,共14页
PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC).PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under diff... PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC).PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under differentstresses. However, bioinformatic characteristics and potential functions of PDIs in diatom Phaeodactylumtricornutum (Pt) are still unknown so far. Hence, the genome-wide characteristics of PtPDI proteins in P. tricornutumwere first studied via bioinformatic and transcriptomic methods. 42 PtPDI genes were identified from thegenome of P. tricornutum. The motif, protein structure, classification, number of introns, phylogenetic relationship,and the expression level of 42 PtPDI genes under the tunicamycin stress were analyzed. A pair of tandemduplicated genes (PtPDI15 and PtPDI18) was observed in P. tricornutum. The 42 PtPDIs with different genecharacteristics were divided into three independent clades, indicating different evolutional relationships and functionsof these PtPDIs. The 14 up-regulated PtPDI genes under the tunicamycin treatment might have a positiveeffect on the ER quality control of the unfolded/misfolded proteins, while the 7 down-regulated PtPDIs mightnegatively affect the ERQC. The characteristics of all 42 PtPDIs and their proposed working model here providea comprehensive understanding of the PtPDIs gene family. The differential expression of 21 PtPDIs will be usefulfor further functional study in the ERQC. 展开更多
关键词 Protein disulfide isomerase gene family Endoplasmic Reticulum quality control Phaeodactylum tricornutum
在线阅读 下载PDF
Genetic Analysis of Two Novel GPI Variants Disrupting H Bonds and Localization Characteristics of 55 Gene Variants Associated with Glucose-6-phosphate Isomerase Deficiency
2
作者 Bi-xin XI Si-ying LIU +3 位作者 Yu-ting XU De-dong ZHANG Qun HU Ai-guo LIU 《Current Medical Science》 SCIE CAS 2024年第2期426-434,共9页
Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and mole... Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics,often posing challenges for precise diagnoses using conventional methods.To this end,this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.Methods:The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis.Novel compound heterozygous variants of the GPI gene,c.174C>A(p.Asn58Lys)and c.1538G>T(p.Trp513Leu),were identified using whole-exome and Sanger sequencing.The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.Results:By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study,we found that most variants were located in exons 3,4,12,and 18,with a few localized in exons 8,9,and 14.This study identified novel compound heterozygous variants associated with GPI deficiency.These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.Conclusion:Early family-based sequencing analyses,especially for patients with congenital anemia,can help increase diagnostic accuracy for GPI deficiency,improve child healthcare,and enable genetic counseling. 展开更多
关键词 glucose-6-phosphate isomerase deficiency whole-exome sequencing compound heterozygous variants genetic characterization hydrogen bond
在线阅读 下载PDF
Cloning of Tap Ⅱ Chalcone Isomerases(CHI1 A) Gene and Construction of Lactococcus Lactis Expression Vector 被引量:7
3
作者 刘洪禹 王丕武 +2 位作者 付永平 张卓 马超 《Agricultural Science & Technology》 CAS 2010年第4期44-46,93,共4页
[Objective]The aim was to clone TapⅡchalcone isomerases(CHI1 A) from soybean specially and construct expression vector of PNZ8149-CHI1 A,and then transform it into Lactococcus Lactis NICE systers.[Method]Chalcone i... [Objective]The aim was to clone TapⅡchalcone isomerases(CHI1 A) from soybean specially and construct expression vector of PNZ8149-CHI1 A,and then transform it into Lactococcus Lactis NICE systers.[Method]Chalcone isomerases(CHI1 A) was cloned by RTPCR method,and it was sequenced after cloning into pMD18-T vectors,and recombined to expression vector PNZ8149-CHI1 A,then it was transformed into Lactococcus Lactis NZ3900[Result]The sequencing results indicated that the cloned fragment of CHI1 A contained 670 nucleotides,and shared a sequence homology of 92% with that from Genbank accession number AF595413(CHI1 A).CHI1 A was transformed into NICE expression system successfully by identification of PCR and digestion.[Conclusion]The foundation of using the microorganism fermentation method to produce flavonoids was laid by construction of efficient induction expression vector with chalcone isomerases CHI1 A. 展开更多
关键词 SOYBEAN Chalcone isomerases Lactococcus Lactis The nisin-control led expression
在线阅读 下载PDF
Bioinformatics Analysis and Homology Modeling Study of Protein Disulfide Isomerase(mPDI) from Medicago sativa L. 被引量:3
4
作者 王海波 施晓东 +1 位作者 张梅芬 郭俊云 《Agricultural Science & Technology》 CAS 2009年第5期59-64,共6页
pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical p... pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry. 展开更多
关键词 Medicago sativa L. Protein disulfide isomerase Homology modeling
在线阅读 下载PDF
Regulatory Analysis of IPP Isomerase Gene in Haematococcus pluvialis 被引量:1
5
作者 高政权 孟春晓 叶乃好 《Marine Science Bulletin》 CAS 2009年第1期37-42,共6页
The unicellular green alga Haematococcus pluvia/is uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of astaxanthin in the cytosol. The ... The unicellular green alga Haematococcus pluvia/is uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of astaxanthin in the cytosol. The enzyme, isopentenyl pyrophosphate (IPP) isomerase, plays a key role in astaxanthin biosynthesis of H. pluvialis. In this paper, two separate 5'-flanking regions (1.8 kb and 2.5 kb) of IPP isomerase gene was cloned through walking upstream firstly. Results of sequence analysis =showed that two separate 5'-flanking regions of IPP isomerase gene might have similar putative cis-acting elements such as ABA (abscisic acid)-responsive element (ABRE), drought-responsive element (DRE/C-repeat), light-responsive element (G-box, GAG-motif, I-box and ATC-motif), heat-shock element (HSE), wound-responsive element (WUN-motif), SA (salicylic acid)-responsive element (TCA-element), auxin-responsive element (TGA-element), MeJA (methyl jasmonate)-responsive element (TGACG-element), enhancer-like element involved in anoxic specific inducibility (GC-motif) and MYB binding sites (MBS and MRE), except for typical TATA box or CCAAT box, which exhibit diversiform transcriptional patterns of IPP isomerase gene in astaxanthin biosynthesis of Haematococcus pluvialis. 展开更多
关键词 ASTAXANTHIN cis-acting elements 5'-flanking region Haematococcus pluvialis IPP isomerase gene
在线阅读 下载PDF
Phosphoglucose isomerase gene expression as a prognostic biomarker of gastric cancer 被引量:1
6
作者 Han-Chen Huang Xian-Zi Wen +3 位作者 Hua Xue Run-Sheng Chen Jia-Fu Ji Lei Xu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第5期771-784,共14页
Objective: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer(GC)challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.Methods: We first used micr... Objective: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer(GC)challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.Methods: We first used microarray technology to profile gene expression of GC and paired nontumor tissues from 198 patients. Based on these profiles and patients’ clinical information, we next identified prognostic genes using novel computational approaches. Phosphoglucose isomerase, also known as glucose-6-phosphate isomerase(GPI), which ranked first among 27 candidate genes, was further investigated by a new analytical tool namely enviro-geno-pheno-state(E-GPS) analysis. Suitability of GPI as a prognostic marker, and its relationship with physiological processes such as metabolism, epithelial-mesenchymal transition(EMT), as well as drug sensitivity were evaluated using both our own and independent public datasets.Results: We found that higher expression of GPI in GC correlated with prolonged survival of patients.Particularly, a combination of CDH2 and GPI expression effectively stratified the outcomes of patients with TNM stage Ⅱ/Ⅲ. Down-regulation of GPI in tumor tissues correlated well with depressed glucose metabolism and fatty acid synthesis, as well as enhanced fatty acid oxidation and creatine metabolism, indicating that GPI represents a suitable marker for increased probability of EMT in GC cells.Conclusions: Our findings strongly suggest that GPI acts as a novel biomarker candidate for GC prognosis,allowing greatly enhanced clinical management of GC patients. The potential metabolic rewiring correlated with GPI also provides new insights into studying the relationship between cancer metabolism and patient survival. 展开更多
关键词 GASTRIC cancer gene expression profile PROGNOSTIC BIOMARKER phosphoglucose isomerase tumor metabolism
在线阅读 下载PDF
The Study of Food-Grade Induced Expression and Enzymatic Properties of L-Arabinose Isomerase from Lactobacillus plantarum WU14 with High D-Tagatose Yield 被引量:3
7
作者 Xiaoyu Chang Bi Ying +4 位作者 Yanli Zhang Huifang Cao Tong Zhou Ping’an Zhong Bo Xu 《Food and Nutrition Sciences》 2016年第4期320-337,共18页
L-arabinose isomerase (L-AI) is the key enzyme for D-galactose isomerization of D-tagatose by biological method. In this research, Lactobacillus plantarum WU14 with high D-tagatose yield was identified as Lactobacillu... L-arabinose isomerase (L-AI) is the key enzyme for D-galactose isomerization of D-tagatose by biological method. In this research, Lactobacillus plantarum WU14 with high D-tagatose yield was identified as Lactobacillus plantarum was isolated from the number of lactic acid bacteria from pickled vegetables. The crude L-arabinose isomerase activity of Lactobacillus plantarum WU14 with high D-tagatose yield was 13.95 U/mL under the optimal temperature 60&degC, pH 7.17 and substrate concentration 0.8 mol/L, and the conversion rate of 56.12% could be gained after 28 hours. Protein structure and specific of L-Arabinose Isomerase of Lactobacillus plantarum WU14 were researched. The results showed that L-arabinose isomerase is mainly composed of alpha helix and random coil. Then the recombinant L-AI gene was inserted into the food-grade expression vector pRNA48 and expressed in L. lactis NZ9000 successfully. The target protein expression reached the maximum amount when the induced concentration of nisin reaches 30 ng/mL after 12 h. And the crude enzyme activity of recombinant bacteria reached 6.21 U/mL under 60&degC. Otherwise the optimal conversion rate recombinant of L. lactis NZ9000/pRNA48-L-AI can reach 39.21% under the temperature of 50&degC, pH 7.17 and D-galactose concentration was 0.6 mol/L. 展开更多
关键词 D-TAGATOSE Lactobacillus plantarum WU14 L-Arabinose isomerase Recombinant PCR Technology Food-Grade Expression
在线阅读 下载PDF
Phosphoglucose Isomerase Deficiency in <i>Escherichia coli</i>K-12 Is Associated with Increased Spontaneous Mutation Rate 被引量:1
8
作者 Elitsa Boteva Yordan Handzhiyski +4 位作者 Maria Kotseva Kirill A. Datsenko Barry L. Wanner Monika Pischetsrieder Roumyana Mironova 《Advances in Microbiology》 2018年第5期390-405,共16页
Phosphoglucose isomerase (PGI) is a key enzyme in early glycolysis, which catalyzes the reversible isomerization of glucose 6-phosphate (G6Ph) to fructose 6-phosphate. We have constructed an Escherichia coli K12 strai... Phosphoglucose isomerase (PGI) is a key enzyme in early glycolysis, which catalyzes the reversible isomerization of glucose 6-phosphate (G6Ph) to fructose 6-phosphate. We have constructed an Escherichia coli K12 strain with a deleted pgi gene (Δpgi) and shown that this strain in comparison with the parental strain 1) accumulates higher amount of G6Ph, 2) grows slowly, and 3) exhibits higher spontaneous mutation frequency to rifampicin resistance (Rifr), when grown on high glucose minimal medium. Intriguingly, the spontaneous mutation rate to Rifr was inversely related to the degree of E. coli chromosomal DNA modification with sugar derivatives. We measured higher concentrations of Amadori products, fluorophores (360 nm excitation/440 nm emission) and carboxymethyl residues in the chromosomal DNA of the E. coli parental strain than in DNA of the isogenic Δpgi strain. To explain this apparent paradox we hypothesized that PGI might be implicated in repair of G6Ph-derived lesions in DNA. In favor of our hypothesis, we further demonstrate that protein extract from the E. coli PGI proficient strain but not from the PGI deficient strain catalyzes the release of G6Ph from G6Ph-modified single stranded DNA oligonucleotide and from its hybrid duplex with a complementary peptide nucleic acid. 展开更多
关键词 Phosphoglucose isomerase Glucose 6-Phosphate E. COLI MUTATIONS DNA Repair
在线阅读 下载PDF
Genetic Diversity of Italian Ryegrass Diploid Cultivars, Revealed by Electrophoretically Detected Genotypes in Phosphoglucose Isomerase (PGI) 被引量:1
9
作者 M. Krzakowa 《Journal of Agricultural Science and Technology(B)》 2011年第5期778-782,共5页
Nine diploid cultivars of Italian ryegrass (Lolium multiflorum Lain.) from France (Fortyl, Vertyl and Jericho), Germany (Ligrande), United Kingdom (Aber Epic and Aber Mario), Denmark (Cordelia), Netherlands ... Nine diploid cultivars of Italian ryegrass (Lolium multiflorum Lain.) from France (Fortyl, Vertyl and Jericho), Germany (Ligrande), United Kingdom (Aber Epic and Aber Mario), Denmark (Cordelia), Netherlands (Alamo) and Poland (Tur) were tested with horizontal gel electrophoresis according to one locus (with four alleles) of the PGI enzyme system. One of them, named P4 is typical for the species, therefore can serve as a good marker for hybrids identification. Each cultivar was characterized by frequencies of different phenotypes. They were highly polymorphic (Pg = 0.58 - 0.78) and showed differences in heterozygosity level. The variability within populations (GST = 0.055) was higher than among populations (DST = 0.032). 展开更多
关键词 Lolium multiflorum diploid cultivars genetic structure phosphoglucose isomerase (PGI) ELECTROPHORESIS
在线阅读 下载PDF
Using the Phosphomannose Isomerase (PMI) Gene from Saccharomyces cerevisiae for Selection in Rice Transformation
10
作者 WANG Tao LIU Liang-yu TANG Yong-yan ZHANG Xiao-bo ZHANG Mei-dong ZHENG Yong-lian ZHANG Fang-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第9期1391-1398,共8页
The phosphomannose isomerase (PMI) gene from Saccharomyces cerevisiae acted as selectable marker and mannose acted as selective agent for the production of transgenic plants of rice (Oryza sativa L.) via Agrobacte... The phosphomannose isomerase (PMI) gene from Saccharomyces cerevisiae acted as selectable marker and mannose acted as selective agent for the production of transgenic plants of rice (Oryza sativa L.) via Agrobacterium-mediated transformation. The concentration of mannose during the selection was stepwise increased, 5 g L-1 mannose combined with 15 g L-1 sucrose and 500 mg L-1 cefotaxime was used in the initial selection stage, then the concentration of mannose was increased to 11 g L-1, the highest transformation rate was 20.0%. The integration of PMI gene was confirmed by PCR, and the result of RT-PCR assay proved that the intron of PMI gene can be excised correctly during RNA splicing. 13- Glucuronidase (GUS) activity analysis confirmed the expression of GUS gene. All those means the PMI gene from yeast can be used as a selectable marker in rice transformation. 展开更多
关键词 phosphomannose isomerase selectable marker Saccharomyces cerevisiae TRANSFORMATION RICE
在线阅读 下载PDF
Evolutionary Relationship of Wheat Protein Disulphide Isomerase (PDI) Gene Promoter Sequence Based on Phylogenetic Analysis
11
作者 Arun Prabhu Dhanapal 《American Journal of Plant Sciences》 2012年第3期373-380,共8页
Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the bioge... Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the biogenesis of protein bodies in the endosperm. Cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv. Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species were reported in our previous publications. Promoter sequences of three homoeologous genes encoding typical PDI, located on chromosome group 4 of bread wheat, and PDI promoter sequence analysis of Triticum urartu, Aegilops speltoides and Aegilops tauschii had also been reported previously. In this study, we report the isolation and sequencing of a ~700 bp region, comprising ~600 bp of the putative promoter region and 88 bp of the first exon of the typical PDI gene, in five accessions each from Triticum urartu (AA), Aegilops speltoides (BB) and Aegilops tauschii (DD). Sequence analysis indicated large variation among sequences belonging to the different genomes, while close similarity was found within each species and with the corresponding homoeologous PDI sequences of Triticum aestivum cv. CS (AABBDD) resulting in an overall high conservation of the sequence conferring endosperm-specific expression. 展开更多
关键词 Protein DISULFIDE isomerase (PDI) Promoter WHEAT PHYLOGENETIC Analysis
在线阅读 下载PDF
Characterization of an algal phosphomannose isomerase gene and its application as a selectable marker for genetic manipulation of tomato
12
作者 Yuanyuan Lin Junchao Huang 《Plant Diversity》 SCIE CAS CSCD 2021年第1期63-70,共8页
Establishing a transgenic plant largely relies on a selectable marker gene that can confer antibiotic or herbicide resistance to plant cells.The existence of such selectable marker genes in genetically modified foods ... Establishing a transgenic plant largely relies on a selectable marker gene that can confer antibiotic or herbicide resistance to plant cells.The existence of such selectable marker genes in genetically modified foods has long been criticized.Plant cells generally exhibit too low an activity of phosphomannose isomerase(PMI)to grow with mannose as a sole carbon source.In this study,we characterized PMI from the green microalga Chlorococcum sp.and assessed its feasibility as a selectable marker for plant biotechnology.Chlorococcum sp.PMI(ChlPMI)was shown to be closely related to higher plants but more distant to bacterial counterparts.Overexpression of ChlPMI in tomato induced callus and shoot formation in media containing mannose(6 g/L)and had an average transformation rate of 3.9%.Based on this transformation system,a polycistronic gene cluster containing crtB,HpBHY,CrBKT and SlLCYB(BBBB)was co-expressed in a different tomato cultivar.Six putative transformants were achieved with a transformation rate of 1.4%,which produced significant amounts of astaxanthin due to the expression of the BBBB genes.Taken together,these findings indicate that we have established an additional tool for plant biotechnology that may be suitable for genetically modifying foods safely. 展开更多
关键词 ALGAE TOMATO TRANSFORMATION Phosphomannose isomerase ASTAXANTHIN
在线阅读 下载PDF
Molecular Dynamics Simulation of Temperature-dependent Flexibility of Thermophilic Xylose Isomerase
13
作者 Wei Xu Ping Cai +2 位作者 Ming Yan Lin Xu Ping-kai Ouyang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第5期467-472,I0001,共7页
The complex model of Thermus thermophilus xylose isomerase (TtXI) with D-xylose was constructed, and molecular dynamics (MD) simulations were carried out at 300 and 360 K for 10 ns by NAMD2.5. The radius of gyrati... The complex model of Thermus thermophilus xylose isomerase (TtXI) with D-xylose was constructed, and molecular dynamics (MD) simulations were carried out at 300 and 360 K for 10 ns by NAMD2.5. The radius of gyration (Rg), subunit interactions, and residue flexibility were analyzed. The results show that residues 60-69, 142-148, 169-172, and 332-340 have high flexibility at 300 and 360 K. Residues with higher flexibility at 360 K than that at 300 K can mainly be divided into two groups: one locates in the helix-loophelix region consisting of residues 55-80 in catalytic domain; the other at subunit interfaces. The Rg of catalytic domain at 360 K shows 0.16 A higher than that at 300 K, but Rg of small C-terminal domain has no obvious difference. The results indicate that enhanced Rg of catalytic domain may lead to the intense motion of the active site of TtXI and promote the D-xylose isomization reaction. Eight hydrogen bonds and five ion pairs are reduced at subunit interfaces at 360 K compared with 300 K, that may be the main reason for the decrease in rigidity and increase in activity at high temperature of TtXI. This result also help to explain the cold-adaption phenomenon of TtXI E372G mutant reported previously. Our results reveal the relationship between temperature and structure flexibility of TtXI, and play an important role in understanding the thermostability of thermophile protein with multiple subunits. 展开更多
关键词 Molecule dynamics Xylose isomerase Structure FLEXIBILITY
在线阅读 下载PDF
The diagnostic significance of glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibody in rheumatoid arthritis patients
14
作者 Daren Yang Huinan Ge +5 位作者 Jing Dong Xiongxiong Zhu Gang Sun Weiguo Ouyang Linhui Wang Guoxing Zhang 《Advances in Bioscience and Biotechnology》 2013年第8期818-822,共5页
Objective: To investigate whether glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibodies could be applied for the clinical diagnostic markers of rheumatoid arthritis (RA) and its associations with RA ac... Objective: To investigate whether glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibodies could be applied for the clinical diagnostic markers of rheumatoid arthritis (RA) and its associations with RA activity states. Methods: The levels of G6PI antigens and anti-G6PI Abs in sera from 176 RA patients in different states, 35 non-RA patients and 100 healthy donors and in synovia fluids from 33 patients and 11 non-RA patients were measured by ELISA. Results: The sensitivity and specificity of G6PI antigens in the RA patients were 75.0% and 93.3%, respectively. The levels of serum G6PI antigens in 176 RA patients were significantly higher than non-RA patients and the health controls. Especially, there was a significant difference between the active phase and the inactive phase in G6PI antigens levels. The levels of G6PI antigens in synovia fluid were also significantly higher in RA groups than in non-RA patients. With the values of the anti-G6PI Abs in sera, there were no marked differences among RA, non-RA patients and health controls. Also, there was no significant difference between the active phase and the inactive phase in RA patients. However, there were no significant differences of G6PI and anti-G6PI between RA patients and health controls in synovial fluid. Conclusions: G6PI is highly correlated with the activity states of RA, and could be applied for a clinical biomarker with high sensitivity and specificity for the diagnosis of RA. 展开更多
关键词 Glucose-6-Phosphate isomerase (G6PI) G6PI ANTIBODY RHEUMATOID ARTHRITIS (RA)
在线阅读 下载PDF
Protein Disulfide Isomerase A2 Is Correlated with Immune Infiltrates and Is a Novel Prognostic Biomarker in Glioma Patients
15
作者 Zhi-gang MA Ying-xue LIU +5 位作者 Ning ZOU Zhe HUANG Ming WANG Tao LI Jie ZHOU Li-gang CHEN 《Current Medical Science》 SCIE CAS 2023年第6期1107-1115,共9页
Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together w... Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together with enzymes such as thiol isomerase,oxidase,and reductase.This study investigated the clinical significance and potential functions of PDIA2 in glioma.Methods The expression of PDIA2 in gliomas was explored using The Cancer Genome Atlas and Gene Expression Omnibus databases.We analyzed the clinical characteristics of glioma patients and the prognostic and diagnostic value of PDIA2 expression.Kaplan-Meier and Cox regression analyses were used to examine the effect of PDIA2 expression on overall survival,progression-free interval,and disease-specific survival.Furthermore,we performed Gene Set Enrichment Analysis and immune infiltration analysis to investigate the functions of PDIA2.PDIA2 mRNA and protein expression was evaluated in cell lines and glioma tissues.Results PDIA2 was expressed at low levels in glioma patients.Kaplan-Meier survival analysis showed that glioma patients with low PDIA2 levels had a worse prognosis than those with high PDIA2 levels.Receiver operating characteristic curve analysis indicated the diagnostic and prognostic ability of PDIA2(area under the curve=0.918).Pathways associated with PD1,PI3K/AKT,cancer immunotherapy via PD1 blockade,Fceri-mediated NF-kB activation,FOXM1,and DNA repair were enriched in glioma patients with low levels of PDIA2.PDIA2 expression levels were negatively correlated with immune cell infiltrate levels.Conclusion PDIA2 levels are significantly downregulated in glioma.PDIA2 expression may be a potential biomarker for the diagnosis and prognosis of glioma patients. 展开更多
关键词 GLIOMA protein disulfide isomerase A2 BIOINFORMATICS diagnosis prognosis
在线阅读 下载PDF
Cloning and Characterization of a Lycium chinense Carotenoid Isomerase Gene Enhancing Carotenoid Accumulation in Transgenic Tobacco
16
作者 李招娣 季静 王罡 《Transactions of Tianjin University》 EI CAS 2015年第5期468-476,共9页
Carotenoid isomerase (CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all- trans tycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for t... Carotenoid isomerase (CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all- trans tycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for the first time. The open reading flame of LcCRTISO was 1 815 bp encoding a protein of 604 amino acids with a molecular mass of 66.24 kDa. Amino acid sequence analysis revealed that the LcCRTISO had a high level of simi- larity to other CRTISO. Phylogenetic analysis displayed that LcCRTISO kept a closer relationship with the CRTISO of plants than with those of other species. Semi-quantitative PCR analysis indicated that LcCRTISO gene was expressed in all tissues tested with the highest expression in maturing fruits. The overexpression of LcCRTISO gene in transgenic tobacco resulted in an increase of total carotenoids in the leaves with [3-carotene and lutein being the predominants. The results obtained here clearly suggested that the LcCRTISO gene was a promising candidate for carotenoid production. 展开更多
关键词 Lycium chinense carotenoid isomerase functional expression carotenoid biosynthesis transgenictobacco
在线阅读 下载PDF
Ce-SAD Phasing of Glucose Isomerase and Thermolysin Using Cu <i>Kα</i>Radiation
17
作者 Sibi Narayanan Devadasan Velmurugan 《Crystal Structure Theory and Applications》 2013年第3期93-99,共7页
Current structural genomics projects aim to solve a large number of selected protein structures as fast as possible. High degree of automation and standardization is required at every step of the whole process to spee... Current structural genomics projects aim to solve a large number of selected protein structures as fast as possible. High degree of automation and standardization is required at every step of the whole process to speed up protein structure determination. Phase problem is a bottleneck in macromolecular structure determination and also in model building which is a time-consuming task. The simplest approach to phasing macromolecular crystal structures is the use of a SAD signal. SAD data can be collected using the in-house copper (1.54 A) wavelength source. Data collected using copper wavelength with the incorporation of anomalously scattering heavy metal atoms may serve as a powerful tool for structural biologists to solve novel protein structures as well where synchrotron beam line is not available. A short soak of protein crystals in heavy metal solution or by incorporating heavy atoms into the protein drop while crystallizing the protein (co-crystallization) leads to incorporation of these heavy metal ions into the ordered solvent shell around the protein surface. The present work aims to determine whether cerium ion can be successfully incorporated into the protein crystal through quick-soaking method while maintaining the isomorphism. The study also aims in understanding whether this metal ion can be used for phasing purpose. The intensity data are collected and analyzed for anomalous signal, substructure solution and the binding sites. 展开更多
关键词 Anomalous Scattering SAD PHASING CE Glucose isomerase THERMOLYSIN
在线阅读 下载PDF
Evidence That Protein Disulfide Isomerase in Yeast Saccharomyces cerevisiae Is Transported from the ER to the Golgi Apparatus
18
作者 Tadashi Miura Yukari Oda Yasuhiko Shizawa 《Journal of Biomedical Science and Engineering》 2022年第2期83-88,共6页
Newly synthesized membrane and secretory proteins in cells undergo folding in the endoplasmic reticulum with the introduction of disulfide bonds and acquire the correct three-dimensional structure. Disulfide bonds are... Newly synthesized membrane and secretory proteins in cells undergo folding in the endoplasmic reticulum with the introduction of disulfide bonds and acquire the correct three-dimensional structure. Disulfide bonds are especially important for protein folding. It has been thought that formation of protein disulfide bonds in eukaryotes is mainly carried out by an enzyme called protein disulfide isomerase. Proteins, bearing the C-terminus of amino acids sequences with His-Asp-Glu-Leu (HDEL) sequence in yeast, in the endoplasmic reticulum (ER), which is a eukaryotic cellular organelle involved in protein synthesis, processing, and transport, have been considered to recycle between ER and Golgi apparatus. The proposal for this recycling model derives from the study of an HDEL-tagged fusion protein. Here, the localization and oligosaccharide modification of protein disulfide isomerase were investigated in yeast, and showed the first direct evidence that this intrinsic ER protein transports from ER to Golgi. Results suggest that this native protein is also accessible to post-ER enzymes, and yet accumulates in the ER. 展开更多
关键词 Protein Disulfide isomerase Endoplasmic Reticulum Golgi Apparatus Oligosaccharide Modification Protein Localization
在线阅读 下载PDF
巴西橡胶树查尔酮异构酶HbCHI基因家族的鉴定和基因功能初步验证
19
作者 吴倩倩 夏玲 +3 位作者 于飞 梁晓宇 王萌 张宇 《热带作物学报》 北大核心 2025年第2期247-255,共9页
为了研究查尔酮异构酶(CHI)对橡胶树叶片发育过程中黄酮类化合物合成的影响,本研究利用CHI的功能域Chalcone(PF02431)鉴定橡胶树查尔酮异构酶Hb CHI基因家族成员,分析其蛋白序列理化性质、保守结构域、保守基序和系统进化树分析;利用qRT... 为了研究查尔酮异构酶(CHI)对橡胶树叶片发育过程中黄酮类化合物合成的影响,本研究利用CHI的功能域Chalcone(PF02431)鉴定橡胶树查尔酮异构酶Hb CHI基因家族成员,分析其蛋白序列理化性质、保守结构域、保守基序和系统进化树分析;利用qRT-PCR分析Hb CHI在橡胶树叶片发育过程中的表达模式;利用农杆菌介导的烟草瞬时表达技术分析Hb CHI2影响植物黄酮合成的功能。结果表明:从橡胶树基因组数据库中鉴定获得9个HbCHI基因家族成员(HbCHI1~HbCHI9),其编码的蛋白质包含177~474个氨基酸,等电点为5.1~9.52,主要为亲水蛋白;大部分HbCHI含有1~3个数量不等的基序,只有HbCHI1含有6个保守基序(motif1~motif6);系统进化分析显示,HbCHI1~HbCHI4是Ⅰ型CHI,HbCHI6~HbCHI9表现出脂肪酸结合位点,是Ⅲ型CHI,HbCHI5是Ⅳ型CHI;橡胶树HbCHI基因家族的相对表达量检测结果均表现出从小古铜期到成熟期先下降后上升的趋势,其中在淡绿期时的相对表达量最低,且总黄酮含量与CHI基因相对表达量变化趋势一致;相关性分析表明HbCHI2表达量与黄酮含量相关性最高,皮尔逊系数为0.97;在烟草中过表达HbCHI2促进了本氏烟草中类黄酮的生物合成,增加了叶片的总黄酮含量,是对照的2.13倍。本研究结果表明HbCHI2基因正调控橡胶树叶片中类黄酮生物合成。 展开更多
关键词 巴西橡胶树 查尔酮异构酶 基因表达 类黄酮 基因功能
在线阅读 下载PDF
蔗糖异构酶的制备及修饰研究进展
20
作者 李敏 尚继旭 +2 位作者 贾振华 罗德平 廖爱美 《食品与发酵工业》 北大核心 2025年第3期385-394,共10页
异麦芽酮糖作为一种新型的功能性糖,具有低热量、防龋齿、易吸收、消化慢等特性,是糖尿病和肥胖者可食用的糖,可广泛应用于食品、医药和化妆品行业。目前,异麦芽酮糖的制备方法主要有化学合成法、植物转基因法、微生物转化法及酶转化法... 异麦芽酮糖作为一种新型的功能性糖,具有低热量、防龋齿、易吸收、消化慢等特性,是糖尿病和肥胖者可食用的糖,可广泛应用于食品、医药和化妆品行业。目前,异麦芽酮糖的制备方法主要有化学合成法、植物转基因法、微生物转化法及酶转化法,其中,近年来酶转化法成为新的研究热点,主要运用到蔗糖异构酶。该文综述了蔗糖异构酶产酶菌株的诱变育种、异源表达、分子改造以及酶的化学修饰等方式在制备异麦芽酮糖的研究进展,以期为相关研究工作的开展和工业化生产提供指导。 展开更多
关键词 异麦芽酮糖 蔗糖异构酶 诱变育种 异源表达 分子改造 化学修饰
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部