The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the cor...The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the correspondence of science to reality) and also a novel scheme for different classes of sciences with different ob-jects and paradigms. There are analyzed the chosen “great” and “grand” problems of phys-ics (including the comprehension of quantum mechanics, with a recently elaborated new chapter, connected with time as a quantum obs- ervable and time analysis of quantum processes) and also of natural sciences as a whole. The particular attention is paid to the interpretation questions and slightly to the aspects, inevitably connected with the world- views of the res- earchers (which do often constitute a part of the interpretation questions).展开更多
The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of...The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of nucleotides rather than their sequences. As these ratios are strictly calculated from nucleotide sequences, the values are independent of experimental errors. In the present mini-review, the following themes are approached according to the ratios of amino acids and nucleotides to their total numbers in the genome: prebiotic evolution, the chronological precedence of protein and codon formations, genome evolution, Chargaff’s second pa- rity rule, and the origins of life. Amino acid formation might have initially occurred during pre- biotic evolution, the “amino acid world”, and amino acid polymerization might chronologically precede codon formation at the end of prebiotic evolution. All nucleotide alterations occurred synchronously over the genome during biolo- gical evolution. After establishing primitive lives, all nucleotide alterations have been governed by linear formulae in nuclear and organelle genomes consisting of the double-stranded DNA. When the four nucleotide contents against each individual nucleotide content in organelles are expressed by four linear regression lines representing the diagonal lines of a 0.5 square – the “Diagonal Genome Universe”, evolution obeys Chargaff’s second parity rule. The fact that linear regression lines intersect at a single point su- ggests that all species originated from a single life source.展开更多
Post-translational modification of proteins by N-phosphorylation of the basic amino acid residues plays important roles in biological processes. The high-energy P–N bond might have contributed to the evolution of pre...Post-translational modification of proteins by N-phosphorylation of the basic amino acid residues plays important roles in biological processes. The high-energy P–N bond might have contributed to the evolution of prebiotic chemistry. N-phosphoryl amino acids(PAAs) can serve as interesting small molecular models for the study of P–N bonds in prebiotic chemical evolution. PAAs are capable of simultaneously producing several important biomolecules such as polypeptides and oligonucleotides under mild reaction conditions. In this review, we describe the chemistry of PAAs, discusse their likely prebiotic origins and their reactivity and how they relate to biological P–N bond species. We also depict a possible prebiotic scenario mediated by PAAs in which PAAs may have acted as one of the essential forces driving prebiotic biomolecules to the first protocell.展开更多
文摘The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the correspondence of science to reality) and also a novel scheme for different classes of sciences with different ob-jects and paradigms. There are analyzed the chosen “great” and “grand” problems of phys-ics (including the comprehension of quantum mechanics, with a recently elaborated new chapter, connected with time as a quantum obs- ervable and time analysis of quantum processes) and also of natural sciences as a whole. The particular attention is paid to the interpretation questions and slightly to the aspects, inevitably connected with the world- views of the res- earchers (which do often constitute a part of the interpretation questions).
文摘The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of nucleotides rather than their sequences. As these ratios are strictly calculated from nucleotide sequences, the values are independent of experimental errors. In the present mini-review, the following themes are approached according to the ratios of amino acids and nucleotides to their total numbers in the genome: prebiotic evolution, the chronological precedence of protein and codon formations, genome evolution, Chargaff’s second pa- rity rule, and the origins of life. Amino acid formation might have initially occurred during pre- biotic evolution, the “amino acid world”, and amino acid polymerization might chronologically precede codon formation at the end of prebiotic evolution. All nucleotide alterations occurred synchronously over the genome during biolo- gical evolution. After establishing primitive lives, all nucleotide alterations have been governed by linear formulae in nuclear and organelle genomes consisting of the double-stranded DNA. When the four nucleotide contents against each individual nucleotide content in organelles are expressed by four linear regression lines representing the diagonal lines of a 0.5 square – the “Diagonal Genome Universe”, evolution obeys Chargaff’s second parity rule. The fact that linear regression lines intersect at a single point su- ggests that all species originated from a single life source.
基金supported by the National Basic Research Program of China(2013CB910700,2012CB821600)the National Natural Science Foundation of China(21232005,21375113,21305115)the Program of Chinese Ministry of Education for Changjiang Scholars and Innovative Research Team in University
文摘Post-translational modification of proteins by N-phosphorylation of the basic amino acid residues plays important roles in biological processes. The high-energy P–N bond might have contributed to the evolution of prebiotic chemistry. N-phosphoryl amino acids(PAAs) can serve as interesting small molecular models for the study of P–N bonds in prebiotic chemical evolution. PAAs are capable of simultaneously producing several important biomolecules such as polypeptides and oligonucleotides under mild reaction conditions. In this review, we describe the chemistry of PAAs, discusse their likely prebiotic origins and their reactivity and how they relate to biological P–N bond species. We also depict a possible prebiotic scenario mediated by PAAs in which PAAs may have acted as one of the essential forces driving prebiotic biomolecules to the first protocell.